13286

Изучение вольтамперных характеристик биполярного транзистора в среде Electronics Workbench

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа №2 Изучение вольтамперных характеристик биполярного транзистора в среде Electronics Workbench Цель исследования: Моделирование работы биполярного транзистора в среде Electronics Workbench и виртуальные измерения его входной и выходной вольтамперных характер

Русский

2013-05-11

380.5 KB

106 чел.

Лабораторная работа №2

Изучение вольтамперных характеристик биполярного транзистора в среде Electronics Workbench

Цель исследования: Моделирование работы биполярного транзистора в среде Electronics Workbench и виртуальные измерения его входной и выходной вольтамперных характеристик.     

2.Эксперементальная часть

2.1 Виртуальные измерения входной и выходной  вольтамперных характеристик идеального транзистора в среде Electronics Workbench 

2.1.1 Определение коэффициента передачи эмиттерного тока αN   

         а)   Собрать схему рис.1.1., выбрав следующую марку pnp  

         транзистора: nation1 Q2N5023

Рис.1.1 Простейшая цепь для исследования ВАХ биполярного транзистора

         б)  Установить значения IЭ = 10 mА; UКБ = 0В

         в) Измерить IK и определить αN = IK / IЭ

IK = 9,323 мА

αN = IK / IЭ = 9,323/10 = 0,923 мА.         

2.1.2 Виртуальные измерения выходной ВАХ биполярного                   транзистора

Выходная ВАХ биполярного транзистора – это соотношение,    которое связывает коллекторный ток IK с напряжением в цепи коллектор-база UКБ при условии, что эмиттерный ток IЭ  является параметром. Согласно закону Молла-Эберса данное соотношение имеет вид:

                    IК = αNIЭIК0 (exp(UКБ/φT) - 1 )                                         (1),

где  φT – это так называемый тепловой потенциал равный 25 мэВ.  

а) Собрать схему рис. 1.1., выбрав конкретную марку pnp   транзистора.

б) Провести виртуальные измерения тока  IК0  при условии, что разомкнута цепь эмиттер-база (IЭ = 0) и напряжение в цепи коллектор - база равно 5В.

IК0 = 16,81 мкА

в) Провести виртуальные измерения начального напряжения UКБ0 при условии, что разомкнута цепь коллектор – база (IК = 0), для нескольких значений тока IЭ (IЭ1 = 0; IЭ2 = IК0; IЭ3 = 2IК0; IЭ4 = 3IК0).   

IЭi, (мкА)

0

16.81

33,61

50,43

UКБ0

0,011 мкВ

10,75 мВ

21,1 мВ

29,58 мВ

  

г) Для нескольких значений тока IЭ (IЭ1 = 0; IЭ2 = IК0; IЭ3 = 2IК0; IЭ4 =  

         3IК0)  провести виртуальные измерения IК в зависимости от -UКБ,             

         меняя ЭДС батареи в интервале от -UКБ0 до 1В. Шаг изменения ЭДС

батареи в  интервале (-UКБ0, -UКБ0 + 50 мВ) составляет 5 мВ; в интервале (-UКБ0 + 50 мВ, 100 мВ)  – 10 мВ; в интервале (100 мВ, 1 В) – 100 мВ.         

        Данные виртуальных измерений занести в 4 таблицы типа:

Таблица 1.1.1

IЭ1=0 А

- UКБ, (мВ)

0

5

10

15

20

25

30

35

40

45

50

IK, (мкА)

0

1,99

3,64

5,01

6,14

7,09

7,87

8,52

9,06

9,51

9,89

- UКБ, (мВ)

50

60

70

80

90

100

IK, (мкА)

9,89

10,46

10,87

11,16

11,36

11,51

- UКБ, (мВ)

100

200

300

400

500

600

700

800

900

1 В

IK, (мкА)

11,51

11,98

12,08

12,18

12,28

12,38

12,48

12,58

12,68

12,79

Таблица 1.1.2

IЭ2 = IK0 = 16,81 мкА

- UКБ, (мВ)

-10,75

-5,75

-0,75

4,25

9,25

14,25

19,25

24,25

29,25

 IК, (мкА)

0,002

2,93

5,358

7,368

9,034

10,42

11,56

12,51

13,3

 - UКБ, (мВ)

34,25

39,25

49,25

59,25

69,25

79,25

89,25

99,25

109,25

IК, (мкА)

13,96

14,51

15,34

15,93

16,34

16,63

16,83

16,98

17,09

 - UКБ, (мВ)

34,25

39,25

49,25

59,25

69,25

79,25

89,25

99,25

109,25

IК, (мкА)

13,96

14,51

15,34

15,93

16,34

16,63

16,83

16,98

17,09

Таблица 1.1.3

IЭ2 =2 IK0 = 33,61 мкА

- UКБ, (мВ)

-21,1

-16,1

-11,1

-6,1

-1,1

3,9

8,9

13,9

18,9

IK, (мкА)

-0,007

4,295

7,854

10,8

13,24

15,26

16,93

18,32

19,47

- UКБ, (мВ)

23,9

28,9

38,9

48,9

58,9

68,9

78,9

88,9

98,9

IK, (мкА)

20,42

21,22

22,43

23,27

23,85

24,27

24,56

24,76

24,91

108,9

208,9

308,9

408,9

508,9

608,9

708,9

808,9

908,9

1008,9

25,02

25,41

25,52

25,62

25,73

25,84

25,94

26,05

26,16

26,26

Таблица 1.1.4

IЭ2 =3 IK0 = 50,43 мкА

- UКБ, (мВ)

-29,58

-24,58

-19,58

-14,58

-9,58

-4,58

0,42

5,42

10,42

IK, (мкА)

-0,003

5,904

10,79

14,83

18,17

20,93

23,22

25,12

26,69

- UКБ, (мВ)

15,42

20,42

30,42

40,42

50,42

60,42

70,42

80,42

90,42

IK, (мкА)

28

29,08

30,72

31,86

32,65

33,2

33,29

33,87

34,07

100,42

200,4

300,4

400,4

500,4

600,4

700,4

800,4

900,4

1000

34,21

34,68

34,79

34,9

35,01

35,12

35,23

35,34

35,45

35,55

        

2.1.3 Виртуальные измерения входной ВАХ биполярного  транзистора

         Входная ВАХ  биполярного транзистора – это соотношение, которое связывает напряжение в цепи эмиттер – база  UЭБ с эмиттерным током IЭ при условии, что напряжение в цепи коллектор – база UКБ является параметром. Согласно закону Молла – Эберса данное соотношение имеет вид:

UЭБ = φTLn( IЭ/ IЭ0 + 1 + αN(exp(UКБ/φT) - 1))  (2).

а) Собрать схему рис.1.1, выбрав конкретную марку pnp транзистора.

б) Определить тепловой ток IЭ0 из виртуальных измерений. Для этого положим UКБ равным 5В и будем менять величину IЭ в источнике тока до тех пор, пока показания вольтметра в цепи эмиттер – база не будет превышать ± 10 мкВ.

IЭ0 = 1,05 мкА

в) Для нескольких значений напряжения UКБ (UКБ1= 0; UКБ2 = φTLn2; UКБ2 = φTLn3; UКБ4 = φTLn4) провести виртуальные измерения UЭБ в зависимости от IЭ, который меняется с шагом 0.2 IЭ0 . Причём если UКБ = 0, то IЭ  меняется в интервале (0, 5IЭ0); если UКБ = φTLn2, то IЭ  меняется в интервале (-IЭ0, 5IЭ0); если UКБ = φTLn3, то IЭ  меняется в интервале (-2IЭ0, 5IЭ0); если UКБ = φTLn4, то IЭ  меняется в интервале (-3IЭ0, 5IЭ0).              

         Данные виртуальных измерений занести в 4 таблицы типа:

Таблица 1.2.1

UКБ1= 0

IЭ,(мкА)

0

0,21

0,42

0,63

0,84

1,05

1,26

1,47

1,68

UЭБ, (мВ)

0

1,186

2,34

3,463

4,557

5,623

6,662

7,667

8,667

IЭ,(мкА)

1,89

2,1

2,31

2,52

2,73

2,94

3,15

3,36

3,57

UЭБ, (мВ)

9,664

10,58

11,5

12,41

13,29

14,15

15

15,83

16,65

IЭ,(мкА)

3,78

3,99

4,2

4,41

4,62

4,83

5,04

5,25

 

UЭБ, (мВ)

17,44

18,23

18,99

19,75

20,48

21,21

21,92

22,62

 

Таблица 1.2.2

UКБ2 = φTLn2 = 17,3 мВ

IЭ,(мкА)

-1,05

-0,84

-0,63

-0,42

-0,21

0

0,21

0,42

UЭБ, (мВ)

-9,858

-8,372

-6,94

-5,54

-4,196

-2,89

-1,62

-0,39

IЭ,(мкА)

0,63

0,84

1,05

1,26

1,47

1,68

1,89

2,1

UЭБ, (мВ)

0,81

1,971

3,103

4,206

5,281

6,329

7,352

8,35

IЭ,(мкА)

2,31

2,52

2,73

2,94

3,15

3,36

3,57

3,78

UЭБ, (мВ)

9,324

10,28

11,21

12,12

13,01

13,88

14,73

15,57

IЭ,(мкА)

3,99

4,2

4,41

4,62

4,83

5,04

5,25

UЭБ, (мВ)

16,39

17,19

17,97

18,75

19,5

20,25

20,98

Таблица 1.2.3

UКБ2 = φTLn3 = 27,5 мВ

IЭ,(мкА)

-2,1

-1,89

-1,68

-1,47

-1,26

-1,05

-0,84

-0,63

-0,42

UЭБ, (мВ)

-19,63

-17,78

-16,01

-14,3

-12,66

-11,08

-9,55

-8,074

-6,647

IЭ,(мкА)

-0,21

0

0,21

0,42

0,63

0,84

1,05

1,26

1,47

UЭБ, (мВ)

-5,265

-3,962

-2,627

-1,367

-0,143

1,047

2,205

3,331

4,428

IЭ,(мкА)

1,68

1,89

2,1

2,31

2,52

2,73

2,94

3,15

3,36

UЭБ, (мВ)

5,498

6,54

7,558

8,55

9,52

10,47

11,39

12,3

13,19

IЭ,(мкА)

3,57

3,78

3,99

4,2

4,41

4,62

4,83

5,04

5,25

UЭБ, (мВ)

14,05

14,9

15,73

16,55

17,35

18,13

18,9

19,66

20,4

Таблица 1.2.4

UКБ2 = φTLn4 = 34,7 мВ

IЭ,(мкА)

-3,15

-2,94

-2,73

-2,52

-2,31

-2,1

-1,89

-1,68

UЭБ, (мВ)

-31,16

-28,79

-26,54

-24,36

-22,34

-20,39

-18,5

-16,71

IЭ,(мкА)

-1,47

-1,26

-1,05

-0,84

-0,63

-0,42

-0,21

0

UЭБ, (мВ)

-14,97

-13,31

-11,7

-10,15

-8,658

-7,212

-5,81

-4,456

IЭ,(мкА)

0,21

0,42

0,63

0,84

1,05

1,26

1,47

1,68

UЭБ, (мВ)

-3,142

-1,867

-0,628

0,575

1,745

2,884

3,993

5,073

IЭ,(мкА)

1,89

2,1

2,31

2,52

2,73

2,94

3,15

3,36

UЭБ, (мВ)

6,126

7,154

8,156

9,135

10,09

11,03

11,94

12,83

IЭ,(мкА)

3,57

3,78

3,99

4,2

4,41

4,62

4,83

5,04

5,25

UЭБ, (мВ)

13,71

14,56

15,4

16,23

17,03

17,86

18,59

19,39

20,1

Литература:

[1] И.П. Степаненко, Основы теории транзисторов и транзисторных схем: «Энергия» Москва, 1977г.  

Контрольные вопросы к работе

        

  1.  Какой вид имеет эквивалентная схема идеального  транзистора
  2.  Каковы уравнения для эмиттерного и коллекторного тока идеального транзистора
  3.  Чему равен тепловой потенциал
  4.  Каково соотношение, связывающее между собой тепловой ток эмиттерного    диода IЭ0 и тепловой ток эмиттера IЭ0 ,тепловой ток коллекторного диода IК0 и тепловой ток коллектора IК0
  5.  Каково соотношение, связывающее между собой IЭ0 и IК0
  6.  Как  из формул Молла-Эберса получить выражение для выходной вольт-амперной характеристики идеального транзистора
  7.  Как из формул Мола-Эберса получить выражение для входной вольт-амперной характеристики идеального транзистора     

Ответы на вопросы

  1.  Эквивалентная схема биполярного транзистора представляет собой два диода, включенных навстречу один другому.
  2.  

  1.  Тепловой потенциал φT =25 мэВ.

  1.  

  1.  

  1.  .IК = αNIЭIК0 (exp(UКБ/φT) - 1 )

  1.  UЭБ = φTLn( IЭ/ IЭ0 + 1 + αN(exp(UКБ/φT) - 1)


 

А также другие работы, которые могут Вас заинтересовать

46895. Полные и неполные предложения. Двусоставные и односоставные предложения 35.5 KB
  В основу деления простых предложений на двусоставные и односоставные положено различие в способе выражения основного грамматического значения предложения предикативности: наличие отношений между носителем признака и признаком и их отсутствие когда утверждается независимый признак или бытие предмета. Предложения Донецкая дорога. При синтаксической характеристике односоставных и двусоставных предложений немаловажную роль играет интонация которая определяется коммуникативным заданием предложения.
46896. Нові перспективні методи опорядження фасадів 35.5 KB
  Данний тип штукатурки використовується для опорядження фасадів.даний тип штукатурки влаштовують із полімер мінеральних композицій з білим цементом і фактуроутворювальних зерен.Після влаштування штукатурки на неї наноситься захисний шар із гідрофобних рідин.Пил який залишався після обробки натурального камення використали під час влаштування штукатурки в результаті зявився безшовний тонкошаровий мармур який можна нанести на будь яку поверхню даний тип штукатурки виявився надзвичайно стійким до впливів t і вологи.
46898. Страховой рынок :экономическая природа. Макроэкономическая нестабильность: инфляция 35.85 KB
  Условием возникновения того и другого служат общественное разделение труда и существование различных собственников обособленных товаропроизводителей. Учет расчетов с персоналом по оплате труда. Для оплаты труда работников в организации могут использоваться различные системы оплаты: тарифная система; бестарифная система; система плавающих окладов; система оплаты труда на комиссионной основе. Тарифная система труда представляет собой совокупность нормативов с помощью которых регулируется уровень заработной платы различных групп и категорий...
46899. Доходный подход к оценке бизнеса 35.87 KB
  Доходный подход совокупность методов оценки стоимости объекта основанных на определении текущей стоимости объекта имущества как совокупности ожидаемых доходов от его использования . При оценке с позиции доходного подхода во главу угла ставятся будущие доходы от эксплуатации объекта на протяжении срока его полезного использования как основной фактор определяющий современную величину стоимости объекта. В исчислении совокупного дохода от объекта за ряд лет его жизни в методах доходного подхода используют приемы известные из теории сложных...
46902. Колониальная политика 36 KB
  Над Тунисом был установлен протекторат Франции. Помимо Туниса в наиболее тяжелую зависимость от Франции попали страны Ближнего Востока Египет и Турция. До второй половины 70х годов в Египте властвовал французский капитал а вместе с ним и преобладало и политическое влияние Франции. В это время во Франции вторично пришел к власти Жюль Ферри который уже провел захват Туниса.
46903. Types of colloquial speech. The main distinctive features 36 KB
  Antitsipation constuction. Antitsipation represents the phenomenon in a sense opposite пролепсе, and consists in removal at the first place in the statement of a rheme component. Thus the thematic component in the form of the isolated noun finishes a design: I never met him in my whole life, Jack