13288

Моделирование работы пироэлектрического датчика в среде Electronics Workbench

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа №4 Моделирование работы пироэлектрического датчика в среде Electronics Workbench Цель исследования: Моделирование работы пироэлектрического датчика в среде Electronics Workbench и виртуальные измерения внешнего теплового потока заданного периодической пос

Русский

2013-05-11

367 KB

51 чел.

Лабораторная работа №4

Моделирование работы пироэлектрического датчика в среде Electronics Workbench 

Цель исследования: Моделирование работы пироэлектрического датчика в среде Electronics Workbench и виртуальные измерения внешнего теплового потока, заданного периодической последовательностью прямоугольных  импульсов.

Задание на выполнение лабораторной работы

1. Теоретическая часть 

  1.  Изучить физические принципы, которые лежат в основе пироэлектрического эффекта и необходимы для понимания процесса виртуальных измерений, а также вывод формул, определяющих зависимость выходного напряжения  датчика от формы и длительности внешнего теплового импульса [1] (стр. 100-106)
    1.  Изучить работу функционального генератора и осциллографа программного пакета EWB 5.12 [2] (стр. 10-15)

2  Эксперементальная часть

2.1 Виртуальные измерения выходного напряжения пироэлектрического датчика в зависимости от параметров внешнего теплового потока и тепловой постоянной времени

2.1.1. Оптимизация работы эквивалентной схемы пироэлектрического датчика     

         

         а)   Собрать  схему  рис.1.1.

Рис.1.1 Эквивалентная схема пироэлектрического датчика

б) Установить на панели функционального генератора режим последовательности прямоугольных импульсов; частоту повторения импульсов  (frequency) – 0.5 Гц; отношение длительности импульса  к периоду импульсной последовательности  в процентах (duty cycle) – 25%; амплитуду импульса (amplitude) – 5 В.  

в) Установить значения сопротивления  = 1кОм и ёмкости  =  0.2 мФ.

г) Установить на панели осциллографа режим: «открытого» входа (DC), временной развёртки (Y/T) с длительностью (TIME BASE)  0.5сек/дел.(0.5s/div), ждущий (TRIGGER) с запуском развёртки (EDGE) по переднему фронту запускающего сигнала (левая кнопка), автоматический (AUTO).

д) Установить на панели осциллографа чувствительность для сигнала функционального генератора (внешнего теплового импульса) в канале A (channel A)  10 В/дел.(10 V/div.) и сместить его (Y POSITION) его вниз  на  2.

е) Установить на панели осциллографа чувствительность для выходного сигнала  (выходное напряжение пироэлектрического датчика) в канале В (channel B)  50 В/дел.(50 V/div.) и сместить его (Y POSITION) вверх на 2.    

ж) Выделить и запомнить часть графика выходного сигнала, которая должна соответствовать формуле

                              (1),

где  .

2.1.2 Виртуальные измерения зависимости выходного сигнала пироэлектрического датчика от длительности теплового импульса  

        

а) Собрать схему рис. 1.1

б) Установить на панели функционального генератора режим последовательности прямоугольных импульсов; частоту повторения импульсов  (frequency) – 0.5 Гц; амплитуду импульса (amplitude) – 5 В.

Пункты в) – е) соответствуют пунктам в) – е) из 2.1.1

ж)  Меняя на панели функционального генератора отношение (duty cycle) от 10% до 50% с шагом 10%, получить и запомнить на панели осциллографа  5 графиков выходного сигнала.

= 10%

= 20%

= 30%

= 40%

= 50%

2.1.3 Виртуальные измерения зависимости выходного сигнала пироэлектрического датчика от частоты повторения тепловых импульсов           

         

а)   Собрать  схему  рис.1.1.

б) Установить на панели функционального генератора режим последовательности прямоугольных импульсов; отношение длительности импульса  к периоду импульсной последовательности  в процентах (duty cycle) – 25%; амплитуду импульса (amplitude) – 5 В.  

         

Пункты в) – е) соответствуют пунктам в) – е) из 2.1.1

ж) Меняя на панели функционального генератора частоту повторения импульсов  (frequency) от 0.3 Гц до 1.1 Гц с шагом 0.2 Гц получить и запомнить на панели осциллографа 5 графиков выходного сигнала

= 0.3 Гц

= 0.5 Гц

= 0.7 Гц

= 0.9 Гц

= 1.1 Гц

2.1.4 Виртуальные измерения зависимости выходного сигнала пироэлектрического датчика от тепловой постоянной времени      

Пункты а), б), г), д) соответствуют  пунктам а), б), г), д) из 2.1.1

в) Меняя сопротивление  от 0.4 до 1.2 Ом с шагом 0.2 Ом получить и запомнить на панели осциллографа 5 графиков выходного сигнала          

= 0.4 Ом

= 0.6 Ом

= 0.8 Ом

= 1.0 Ом

= 1.2 Ом

         

Контрольные вопросы к работе

  1.  Какие материалы называются пироэлектриками?
  2.  Каков физический принцип действия пироэлектрического датчика

    и чем он отличается от физического принципа действия термопары?

  1.  Что такое первичное пироэлектричество?
  2.  Что такое вторичное пироэлектричество?
  3.  Какова эквивалентная схема пироэлектрического датчика?
  4.  Какова формула для выходного напряжения пироэлектрического датчика при воздействии на него последовательности прямоугольных тепловых импульсов?
  5.  Как определяется тепловая постоянная времени?

Ответы на вопросы:

  1.  Пироэлектрики- это материалы с кристаллической структурой, в которых при воздействии на них тепловым потоком появляются электрические заряды.
  2.  Пироэлектрический детектор можно представить в виде конденсатора, электрически заряжающегося от потока тепла. Этому датчику требуется лишь соответствующая интерфейсная электронная схема для измерения заряда. В отличие от термопар( термоэлектрических устройств), на выходе которых появляется постоянное напряжение, когда два спая различных металлов находятся при стационарной, но разной температуре, в пироэлектриках формируется заряд в ответ на изменение температуры. Также пироэлектрические устройства являются детекторами потока тепла, т.к. изменение температуры происходит при перемещении тепловых волн.
  3.  Первичное пироэлектричество- изменение ориентации диполей из- за их возбуждения при повышении температуры. Также изменение температуры может привести к удлинению или укорачиванию отдельных диполей.
  4.  Вторичное пироэлектричество- следствие пьезоэлектрического эффекта(например, возникновение напряжения в материале из-за теплового расширения).

  1.   

Пояснение схемы: схема состоит из следующих компонентов: а)источник тока – J,  приводящего к появлению тепла;

б)емкости детектора – C;

в)сопротивление утечки – R;

  1.  Q      r 0/h, где РQ- пироэлектрический коэффициент по заряду, А- площадь датчика, Се- емкость датчика, r- диэлектрическая проницаемость, 0- электрическая постоянная, h- толщина датчика.
  2.  Т= CR=cAhR, где С- теплоемкость, R- тепловое сопротивление, с- удельная теплоемкость чувствительного элемента.


 

А также другие работы, которые могут Вас заинтересовать

21356. Назначение, состав вооружения воинских частей и подразделений РЭБ 587.21 KB
  Имеющиеся на вооружении силы и средства РЭБ не в состоянии оказать воздействие на всю систему управления противника поэтому важно применять их в сочетании с огневым поражением на наиболее важных направлениях в нужные периоды боя операции в нужное время по наиболее важным целям. Умелое применение современных комплексов радиоподавления иногда может дать не меньшие результаты чем удары средствами поражения по элементам АСУ противника. Радиоэлектронная борьба РЭБ – совокупность согласованных по целям задачам месту и времени мероприятий...
21357. НАЗНАЧЕНИЕ, ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ, СОСТАВ АВТОМАТИЗИРОВАННЫХ СТАНЦИЙ ПОМЕХ Р –325У,Р378А,Б 53 KB
  АСП обеспечивает: автоматический поиск и обнаружение источников радиоизлучений ИРИ в пределах частотного диапазона или в заданном участке диапазона; автоматическое или ручное пеленгование обнаруженных ИРИ; отображение значений частоты и пеленга обнаруженных ИРИ на табло УУС устройство управления станцией; определение принадлежности обнаруженных ИРИ к объекту РЭП радиоэлектронного подавления путем анализа оператором значений частот параметров сигналов и пеленгов; запись и хранение в ЗУ запоминающее устройство значений...
21358. Назначение, состав, ТТХ, БВ автоматизированного комплекса радиоразведки и подавления Р330 «МАНДАТ 1.2 MB
  Комплекс Р330 Мандат состоит на вооружении подразделений и частей РЭБ Сухопутных войск и предназначен для радиоразведки и радиоподавления линий радиосвязи противника в тактическом и оперативнотактическом звене управления в диапазоне от 1. Состав комплекса Мандат по количеству и типам применяемых средств зависит от организационноштатной структуры ОШС частей РЭБ решаемых ими задач и может включать: а автоматизированный пункт управления АПУ Р330К в составе двух машин: машина управления; аппаратная связи; б...
21359. Расчет СЭП 14.7 MB
  Рулевое устройство предназначается для удержания судна на заданном курсе, а также для его поворота при изменении направления движения
21360. Структурная схема, назначение составных частей, принцип работы станции в различных режимах 50.55 KB
  АПОА предназначен для обнаружения пеленгования и технического анализа ИРИ. Он обеспечивает: панорамную перестройку панорамного обнаружителя Р381Т15 и одновременно с ним автоматического пеленгатора по частоте во всем рабочем диапазоне частот или на отдельных участках диапазона с одинаковыми полосами обзора до семидесяти девяти; определение численных значений частот ИРИ и пеленгов на них с вводом измеренных значений в УУС; определение характеристик сигналов в ручном режиме с помощью анализатора Р399Т и занесение их при...
21361. Аппаратура АПОА: АФС КАМА-4, широкополосное входное устройство Т-152, панорамный обнаружитель Р-381Т1-5 38.37 KB
  Основными функциями изделия являются автоматический поиск радиоизлучений в установленной полосе обзора определение их средних частот ширины спектра и уровня на входе изделия формирование кодов характеристик излучений для передачи в УУС определение момента настройки РПУ на центральную или максимальную частоту спектра излучения. Логическая обработка кодов уровней при поиске сигналов со скоростью 0125 и 0250МГц cек предусматривает разделение импульсных помех и сигналов определение ширины спектра сигнала определение момента точной...
21362. Аппаратура АПОА: назначение, состав и работа составных частей панорамного обнаружителя Р-381Т1-5 25.35 KB
  РПУ Р381Т1 4 предназначено для использования в автоматизированных комплексах. В РПУ имеется гетеродин для приёма ТЛГ и ОПС сигналов работающий в следующих режимах: в режиме плавной перестройки с пределами изменения частоты 5000 Гц. В режиме фиксированных настроек для приёма передач с ОБП стабилизированный кварцевыми резонаторами на частотах 21315 и 21685 кГц режимы ВБП и НБП. Блок ПБ11 предназначен для преселекции усиления и аттенюации принимаемого ВЧ сигнала а также защиты РПУ от мощного сигнала помехи.
21363. Аппаратура АПОА: приемник контроля Р399А 17.93 KB
  В РПУ имеется гетеродин для приёма ТЛГ и ОПС сигналов работающий в следующих режимах: в режиме плавной перестройки с пределами изменения частоты 5000 Гц относительно средней частоты 215 кГц режим ТЛГ. Предусмотрена коррекция частоты гетеродина. Установка частоты и перестройка в ручном режиме обеспечивается: вручную с помощью клавиатуры УСТАНОВКА ЧАСТОТЫ или ручки НАСТРОЙКА с дискретностью 1 при нажатой кнопке 1 переключателя ШАГ НАСТРОЙКИ и с дискретом 10 Гц при нажатой кнопке 10. Обеспечивается установка частоты по...
21364. Аппаратура АПОА: приемоиндикатор Р-381Т1-3 25.68 KB
  Вопрос№1 Назначение и технические данные ПИ Р381Т13 при работе в составе АПОА предназначен для автоматического определения направления пеленга на источники радиоизлучений. Состав: трёхканальное радиоприёмное устройство РПУ; блок индикации пеленга ИП; блок управления; два блока питания для РПУ и ИП. Для уменьшения ошибок пеленгования предусмотрено автоматическое выравнивание характеристик каналов и поддержание их идентичности. Для слухового контроля радиопередач в ПИ имеется слуховой тракт...