13288

Моделирование работы пироэлектрического датчика в среде Electronics Workbench

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа №4 Моделирование работы пироэлектрического датчика в среде Electronics Workbench Цель исследования: Моделирование работы пироэлектрического датчика в среде Electronics Workbench и виртуальные измерения внешнего теплового потока заданного периодической пос

Русский

2013-05-11

367 KB

50 чел.

Лабораторная работа №4

Моделирование работы пироэлектрического датчика в среде Electronics Workbench 

Цель исследования: Моделирование работы пироэлектрического датчика в среде Electronics Workbench и виртуальные измерения внешнего теплового потока, заданного периодической последовательностью прямоугольных  импульсов.

Задание на выполнение лабораторной работы

1. Теоретическая часть 

  1.  Изучить физические принципы, которые лежат в основе пироэлектрического эффекта и необходимы для понимания процесса виртуальных измерений, а также вывод формул, определяющих зависимость выходного напряжения  датчика от формы и длительности внешнего теплового импульса [1] (стр. 100-106)
    1.  Изучить работу функционального генератора и осциллографа программного пакета EWB 5.12 [2] (стр. 10-15)

2  Эксперементальная часть

2.1 Виртуальные измерения выходного напряжения пироэлектрического датчика в зависимости от параметров внешнего теплового потока и тепловой постоянной времени

2.1.1. Оптимизация работы эквивалентной схемы пироэлектрического датчика     

         

         а)   Собрать  схему  рис.1.1.

Рис.1.1 Эквивалентная схема пироэлектрического датчика

б) Установить на панели функционального генератора режим последовательности прямоугольных импульсов; частоту повторения импульсов  (frequency) – 0.5 Гц; отношение длительности импульса  к периоду импульсной последовательности  в процентах (duty cycle) – 25%; амплитуду импульса (amplitude) – 5 В.  

в) Установить значения сопротивления  = 1кОм и ёмкости  =  0.2 мФ.

г) Установить на панели осциллографа режим: «открытого» входа (DC), временной развёртки (Y/T) с длительностью (TIME BASE)  0.5сек/дел.(0.5s/div), ждущий (TRIGGER) с запуском развёртки (EDGE) по переднему фронту запускающего сигнала (левая кнопка), автоматический (AUTO).

д) Установить на панели осциллографа чувствительность для сигнала функционального генератора (внешнего теплового импульса) в канале A (channel A)  10 В/дел.(10 V/div.) и сместить его (Y POSITION) его вниз  на  2.

е) Установить на панели осциллографа чувствительность для выходного сигнала  (выходное напряжение пироэлектрического датчика) в канале В (channel B)  50 В/дел.(50 V/div.) и сместить его (Y POSITION) вверх на 2.    

ж) Выделить и запомнить часть графика выходного сигнала, которая должна соответствовать формуле

                              (1),

где  .

2.1.2 Виртуальные измерения зависимости выходного сигнала пироэлектрического датчика от длительности теплового импульса  

        

а) Собрать схему рис. 1.1

б) Установить на панели функционального генератора режим последовательности прямоугольных импульсов; частоту повторения импульсов  (frequency) – 0.5 Гц; амплитуду импульса (amplitude) – 5 В.

Пункты в) – е) соответствуют пунктам в) – е) из 2.1.1

ж)  Меняя на панели функционального генератора отношение (duty cycle) от 10% до 50% с шагом 10%, получить и запомнить на панели осциллографа  5 графиков выходного сигнала.

= 10%

= 20%

= 30%

= 40%

= 50%

2.1.3 Виртуальные измерения зависимости выходного сигнала пироэлектрического датчика от частоты повторения тепловых импульсов           

         

а)   Собрать  схему  рис.1.1.

б) Установить на панели функционального генератора режим последовательности прямоугольных импульсов; отношение длительности импульса  к периоду импульсной последовательности  в процентах (duty cycle) – 25%; амплитуду импульса (amplitude) – 5 В.  

         

Пункты в) – е) соответствуют пунктам в) – е) из 2.1.1

ж) Меняя на панели функционального генератора частоту повторения импульсов  (frequency) от 0.3 Гц до 1.1 Гц с шагом 0.2 Гц получить и запомнить на панели осциллографа 5 графиков выходного сигнала

= 0.3 Гц

= 0.5 Гц

= 0.7 Гц

= 0.9 Гц

= 1.1 Гц

2.1.4 Виртуальные измерения зависимости выходного сигнала пироэлектрического датчика от тепловой постоянной времени      

Пункты а), б), г), д) соответствуют  пунктам а), б), г), д) из 2.1.1

в) Меняя сопротивление  от 0.4 до 1.2 Ом с шагом 0.2 Ом получить и запомнить на панели осциллографа 5 графиков выходного сигнала          

= 0.4 Ом

= 0.6 Ом

= 0.8 Ом

= 1.0 Ом

= 1.2 Ом

         

Контрольные вопросы к работе

  1.  Какие материалы называются пироэлектриками?
  2.  Каков физический принцип действия пироэлектрического датчика

    и чем он отличается от физического принципа действия термопары?

  1.  Что такое первичное пироэлектричество?
  2.  Что такое вторичное пироэлектричество?
  3.  Какова эквивалентная схема пироэлектрического датчика?
  4.  Какова формула для выходного напряжения пироэлектрического датчика при воздействии на него последовательности прямоугольных тепловых импульсов?
  5.  Как определяется тепловая постоянная времени?

Ответы на вопросы:

  1.  Пироэлектрики- это материалы с кристаллической структурой, в которых при воздействии на них тепловым потоком появляются электрические заряды.
  2.  Пироэлектрический детектор можно представить в виде конденсатора, электрически заряжающегося от потока тепла. Этому датчику требуется лишь соответствующая интерфейсная электронная схема для измерения заряда. В отличие от термопар( термоэлектрических устройств), на выходе которых появляется постоянное напряжение, когда два спая различных металлов находятся при стационарной, но разной температуре, в пироэлектриках формируется заряд в ответ на изменение температуры. Также пироэлектрические устройства являются детекторами потока тепла, т.к. изменение температуры происходит при перемещении тепловых волн.
  3.  Первичное пироэлектричество- изменение ориентации диполей из- за их возбуждения при повышении температуры. Также изменение температуры может привести к удлинению или укорачиванию отдельных диполей.
  4.  Вторичное пироэлектричество- следствие пьезоэлектрического эффекта(например, возникновение напряжения в материале из-за теплового расширения).

  1.   

Пояснение схемы: схема состоит из следующих компонентов: а)источник тока – J,  приводящего к появлению тепла;

б)емкости детектора – C;

в)сопротивление утечки – R;

  1.  Q      r 0/h, где РQ- пироэлектрический коэффициент по заряду, А- площадь датчика, Се- емкость датчика, r- диэлектрическая проницаемость, 0- электрическая постоянная, h- толщина датчика.
  2.  Т= CR=cAhR, где С- теплоемкость, R- тепловое сопротивление, с- удельная теплоемкость чувствительного элемента.


 

А также другие работы, которые могут Вас заинтересовать

10449. Соответствие между дискретным преобразованием Фурье, рядом Фурье и непрерывным преобразованием Фурье 62.5 KB
  Соответствие между дискретным преобразованием Фурье рядом Фурье и непрерывным преобразованием Фурье. Как правило сигнал представленный в цифровом виде состоит из последовательности из последовательности из N отсчетов – xn. Такому сигналу можно поставить в соответс
10450. Математическое описание непрерывных изображений. Преобразование Фурье. Дискретизация и восстановление изображений. Теорема Котельникова 163 KB
  Математическое описание непрерывных изображений. Преобразование Фурье. Дискретизация и восстановление изображений. Теорема Котельникова. А. Распределение освещенности на изображении описывается в общем случае непрерывной функцией от четырех переменных – двух про
10451. Схемы переходов от непрерывных преобразований к дискретным преобразованиям 44 KB
  Схемы переходов от непрерывных преобразований к дискретным преобразованиям. Введем определения следующих операций: Частотным окном FW frequency window называется ограничение спектра сигнала по частоте. При этом спектр сигнала становится финитным. Окно не обязательно дол
10452. Глаз и психофизические свойства зрения. Зрительные явления. Модель одноцветного зрения. Модель цветного зрения 301 KB
  Глаз и психофизические свойства зрения. Зрительные явления. Модель одноцветного зрения. Модель цветного зрения. На выходе изображающих систем обычно создается фотоснимок или изображение на экране которые рассматриваются человеком. Поэтому очевидно что для эффективн
10453. Квантование изображений. Фотометрия и колориметрия. Преобразование координат цвета. Цветовое тело 788.5 KB
  Квантование изображений. Фотометрия и колориметрия. Преобразование координат цвета. Цветовое тело. Рассмотрим случай чернобелого панхроматического изображения. Для его представления в цифровом виде величину каждого отсчета дискретного изображения необходимо предс...
10454. Двумерные унитарные преобразования. Преобразование Фурье, косинусное, синусное, Адамара, Хаара 2.03 MB
  Двумерные унитарные преобразования. Преобразование Фурье косинусное синусное Адамара Хаара. А. Унитарные преобразования являются частным случаем линейных преобразований когда линейный оператор точно обратим а его ядро удовлетворяет условию ортогональности. В...
10455. Вейвлет-преобразование. Алгоритмы Лифтинга и Маллата 192.5 KB
  Вейвлетпреобразование. Алгоритмы Лифтинга и Маллата. Вейвлет компрессия в последнее время стала передовой технологией среди методов представления и сжатия сигналов и изображений. Методы сжатия с вейвлет преобразованием можно отнести к классу методов с исполь
10456. Алгоритмы сжатия изображений 163 KB
  Алгоритмы сжатия изображений Введение В настоящее время в космических системах ДЗЗ отмечается быстрый рост производительности оптикоэлектронных систем съемки Земли в то время рост пропускной способности радиолиний передачи данных характеризуется более медленным...
10457. Алгоритмы сжатия на основе вейвлет-преобразования. Алгоритм SPIHT 63 KB
  Алгоритмы сжатия на основе вейвлетпреобразования. Алгоритм SPIHT. Изображение полученное при помощи вейвлетпреобразования можно сжимать различными способами. Большинство из них можно отнести к одной из двух категорий. К первой категории относятся способы сводящиеся