1346

Инженерная геология

Шпаргалка

География, геология и геодезия

Строение Земли и Земной коры. Размеры Земли. Ядро, мантия, земная кора. Их размеры и строение. Строение Земной коры. Оболочки Земли. Элементы геологической среды. Генетическая классификация горных пород. Характеристика магматических, метаморфических и осадочных пород. Принципы классифицирования в каждой группе. Магматические горные породы, условия образования, классификация. Структура, текстура. Описание характерных (из лотка).

Русский

2013-01-06

794.5 KB

126 чел.

1.     «Инженерная геология» – определение предмета, его цели, задачи, структура. Где, когда и почему зародился предмет.

ИГ – отрасль г, которая изучает геологические процессы верхних горизонтов земной коры и физико – механические свойства горных пород в связи с инженерно – строительной деятельностью человека. Рассматривает состав, структуру, текстуру и свойства горных пород как грунтов; разрабатывает прогнозы тех процессов и явлений, которые возникают при взаимодействии сооружений с природной обстановкой, и пути возможного воздействия на процессы с целью устранения их вредного влияния.

ИГ: а) инж. петрология – наука о скальных горных породах, их минералогическом и химическом составе, структуре, происхождении и свойствах; б)Грунтоведение – отрасль ИГ , изучающая происхождение , состав, строение и свойства грунтов( нескальных (мягких) горных пород); в) инж. геодинамика – учение о геологических процессах, влияющих на устойчивость зданий, сооружений и территорий( изучает обвалы, оползни, заболачивания, выветривания и др. процессы); г) Специальная ИГ – изучает условия строительства инженерных сооружений( ИГ строительства ж/д, ИГ платин, ИГ портовых сооружений, ИГ аэропортов, ИГ космодромов); д) региональная ИГ – учение о закономерностях пространственного распространения И-Г условий.

Задачи: 1)Инженерно-геологическое изучение горных пород; 2) изучение опасных геологических процессов (ОГП); 3) Совершенствование полевых методов и-г исследований; 4)разработка мероприятий по защите территорий от ОГП; 5) Оценка и прогноз изменения ИГ условий во времени  из-за действия климата, процессов внешней и внутренней динамики Земли. Это необходимо для: разработки рациональных ,экономичных и надежных конструкций сооружений( фундаментов опор мостов, зданий, насыпей, их оснований, выемок транспортных сооружений, тоннелей и любых других сооружений); безопасного и рационального освоения территорий.

Инженерная геология зародилась первый этап истории инженерной геологии начинается с 20-х годов ХХ века с возникновения грунтоведения и механики грунтов. В 1923 г. в Петрограде было создано Дорожно-исследовательское бюро, в котором под руководством Н.И.Прохорова, П.А.Земятченского и Н.И.Иванова началось исследование почв и осадочных пород для дорожного строительства. Возникло "дорожное грунтоведение. В 1930-е годы вышли первые учебники по грунтоведению. Одновременно с грунтоведением возникла и механика грунтов. Практически в это же время возникло и другое научное направление, связанное с изучением влияния геологических процессов на возводимые инженерные сооружения, получившее тогда название  "инженерная геология". Это направление в СССР развивалось в связи с гидротехническим строительством. Его основоположниками были Ф.П.Саваренский, Г.Н.Каменский, Н.Ф.Погребов, И.В.Попов. Первая кафедра инженерной геологии была открыта в 1929 г. в Ленинградском горном институте, а в 1932 г. - в Московском геологоразведочном институте (МИСИ).  

2.     Строение Земли и Земной коры. Размеры Земли. Ядро, мантия, земная кора. Их размеры и строение.

Строение Земли

Строение Земли и поверхность Земли таковы, что её форма близка к вытянутому эллипсоиду — это шарообразная форма с утолщениями на экваторе — и отличается от него на величину до 100 метров. Средний диаметр Земли равен 12 742 км. Учёными установлена ориентировочная масса Земли. Она составляет 5,98×1024кг. Изучая строение Земли, исследуя поверхность Земли, учёные пришли к выводу, что наша планета состоит в основном из железа (32,1 %), кислорода (30,1 %), кремния (15,1 %), магния (13,9 %), серы (2,9 %), никеля (1,8 %), кальция (1,5 %) и алюминия (1,4 %), а на другие элементы приходится 1,2 %.Поверхность Земли

Рельеф и поверхность Земли очень разнообразен. Примерно 70,8 % поверхности Земли покрыто водой. Поверхность Земли под водой гористая. Это океанические хребты и желоба, подводные вулканы и каньоны, а также океанические плато и абиссальные равнины. Оставшиеся 29,2 % - это суша, которая состоит из гор, пустынь, равнин и т.д.

С течением времени строение Земли, а в особенности её поверхность, постепенно меняются. Рельеф тектонических плит и земная кора формируются под воздействием осадков, колебаний температур, химических воздействий, выветривания. Ледники, береговая эрозия, коралловые рифы, столкновения с метеоритами также влияют на строение Земли и на структуру поверхности Земли. А с развитием цивилизации и человек всё больше и больше воздействует на, казалось бы, неподвластное ему строение Земли. И, наверное, наша основная задача – сделать так, чтобы это воздействие не стало губительным для нашей любимой планеты – планеты Земля. Ведь именно человек в ответе за сохранение природы нашей планеты, за её самые глубокие озера и самые высокие горы, за сушу и за море, за всё, что происходит вокруг нас.

Земная кора

Земля, подобно трём другим планеты земной группы, имеет слоистое внутреннее строение. Она представляет собой металлическое ядро, окруженное твёрдыми силикатными оболочками (крайне вязкой мантией и земной корой). Внешняя часть металлического ядра жидкая, а внутренняя — твёрдая. Ядро состоит из железно-никелевого сплава с примесью других элементов. Земная кора — это верхняя часть твёрдой оболочки. Толщина земной коры колеблется в пределах от 6 км под океаном, до 30—50 км на континентах. В строении Земли различают два вида земной коры — континентальная земная кора и океаническая земная кора. Континентальная земная кора имеет три геологических слоя: осадочный чехол, гранитный и базальтовый. Океаническая земная кора представлена в большей степени породами основного состава, плюс осадочный чехол. Крайне вязкая мантия — это силикатная оболочка планеты, сложенная в основном породами, состоящими из силикатов магния, железа, кальция и т.д. В строении Земли доля мантии примерно 67 % от массы Земли и около 83 % от её объёма. Глубина расположения мантии - от 5 — 70 км ниже границы с земной корой, до границы с металлическим ядром на глубине 2900 км. Мантию принято разделять на верхнюю и нижнюю. Выше границы 660 километров расположена верхняя мантия, а ниже, естественно, нижняя. Эти две части мантии отличаются друг от друга составом, строением и физическими свойствами. Известно, что верхняя мантия за весь период формирования Земли претерпела достаточно значительные изменения, она же и породила земную кору. Нижняя же мантия, изучена значительно меньше, но есть все основания полагать, что её состав со времен формирования строения Земли претерпел гораздо меньшие изменения.

3. Строение Земной коры. Оболочки Земли. Элементы геологической среды. 

Земля имеет 6 оболочек: атмосферу, гидросферу, биосферу, литосферу, пиросферу и центросферу.Атмосфера - внешняя газовая оболочка Земли. Ее нижняя граница проходит по литосфере и гидросфере, а верхняя - на высоте 1000 км. В атмосфере различают тропосферу (двигающийся слой), стратосферу (слой над тропосферой) и ионосферу (верхний слой).Средняя высота тропосферы - 10 км. Ее масса составляет 75% всей массы атмосферы. Воздух тропосферы перемещается как в горизонтальном, так и в вертикальном направлениях.Над тропосферой на 80 км поднимается стратосфера. Ее воздух, перемещающийся лишь в горизонтальном направлении, образует слои.Еще выше простирается ионосфера, получившая свое название в связи с тем, что ее воздух постоянно ионизируется под воздействием ультрафиолетовых и космических лучей.Гидросфера занимает 71% поверхности Земли. Солнечный свет проникает на глубину 200 м, а ультрафиолетовые лучи - на глубину до 800 м.Биосфера, или сфера жизни, сливается с атмосферой, гидросферой и литосферой. Ее верхняя граница достигает верхних слоев тропосферы, нижняя - проходит по дну океанских впадин. Биосфера подразделяется на сферу растений (свыше 500 000 видов) и сферу животных (свыше 1 000 000 видов).Литосфера - каменная оболочка Земли - толщиной от 40 до 100 км. Она включает материки, острова и дно океанов. Средняя высота материков над уровнем океана: Антарктиды - 2200 м, Азии - 960 м, Африки - 750 м, Северной Америки - 720 м, Южной Америки - 590 м, Европы - 340 м, Австралии - 340 м.Под литосферой расположена пиросфера - огненная оболочка Земли. Ее температура повышается примерно на 1°С на каждые 33 м глубины. Породы на значительных глубинах вследствие высоких температур и большого давления, вероятно, находятся в расплавленном состоянии.Центросфера, или ядро Земли, расположена на глубине 1800 км. Экзогенные и эндогенные процессы беспрерывно изменяют твердую поверхность нашей планеты, что, в свою очередь, активно влияет на биосферу Земли.

№5 Породообразующие минералы. Определение и классификация.

Породообразующие минералы- это природные физико-химические соединения , образующихся при эндогенных и экзогенных процессах. Классифицируются минералы по нескольким параметрам: генезису, по форме кристалла и др. Наиболее употребляемой является классификация по  химическому составу. 1)самородные элементы(алмаз, графит, золото, медь, сера, гравий); 2)сульфиды (пирит, антимонит, галенит); 3)галоиды(галит, криолит, сильвин); 4) окислы и гидроокислы(кварц, опал, лимонит); 5) карбонаты, бораты, нитраты(кальцит, доломит, лазурит); 6) сульфаты(гипс, ангидрид); 7)фосфаты(апатит); 8) силикаты(тальк, хлорит). Для определения наименования породообразующих минералов необходимо определить их химический состав, т.е. химическую формулу, а значит его наименование.

№6. Генетическая классификация горных пород. Характеристика магматических, метаморфических и осадочных пород. Принципы классифицирования в каждой группе.

Генетическая классификация горных пород учитывает условия их образования, которые предопределяют строение и, следовательно, свойства пород. В соответствии с этой классификацией выделены следующие типы пород: магматические - первичные, образующиеся при остывании магмы; - осадочные - вторичные, образовавшиеся в результате выветривания магматических пород; - метаморфические - осадочные и магматические породы, изменившие свое строение и свойства в результате длительных физико-химических процессов, -протекающих под воздействием высоких давлений, температур и минерализованных вод, во время нахождения их в земной коре.

1.магматические - это породы, образовавшиеся непосредственно из магмы (расплавленной массы преимущественно силикатного состава, образованной в глубинных зонах Земли), в результате её поступления в верхние горизонты Земли, охлаждения и застывания. В зависимости от условий застывания различают интрузивные (глубинные)( граниты, диориты , сиениты) и эффузивные (излившиеся)( базальты, диабазы, андезиты) горные породы. В основе химической классификации лежит процентное содержание кремнезёма (SiO2) в породе. По этому показателю выделяют кислые  (светлые), средние и основные породы. Чем больше SiO2 в породе, тем она светлее.

2.осадочные - горные породы, возникшие путём осаждения вещества в водной среде, реже из воздуха и в результате деятельности ледников на поверхности суши, в морских и океанических бассейнах. Осаждение может происходить механическим путём (под влиянием силы тяжести и изменения динамики среды), химическим (из водных растворов при достижении ими концентраций насыщения и в результате обменных реакций), а также биогенным (под влиянием жизнедеятельности организмов). Породы, образованные лишь в результате физического выветривания прежде существовавших пород, называют обломочными породами( делятся на сцементированные(песчаник, конгломерат, брекчия) и несцементированные(валуны, галечники, гравий, песок и пыль)). Химические осадочные горные породы образовались вследствие преобладающего химического выветривания(известняк, гипс, каменная соль). Глинистые породы, в образовании которых играет большую роль процессы физического и химического выветривания(мягкие связные, скальные) . органические породы, значительная часть которых состоит из остатков растений и скелетов или раковин организмов(мел, торф, антрацит).

3.метаморфические породы – формируются в результате воздействия на исходные(материнские) породы высоких давлений, температур и хим. активных веществ. Типы метаморфизма: 1) региональный(связан с погружением целых регионов земной коры в области высоких давлений и температур). Образуются сланцы, гнейсы, кварциты. 2)контактовый (ассоциируется с эффектами магматич. интрузии в земной коре: на вмещаемую породу воздействуют как высокая температура магмы так и хим. активные в-ва, которые она несет). Образуются скарны, грейзены, вторичные кварциты. 3)катакластический(происходит в условиях скольжения 2х блоков коры друг относительно друга). Образуются брекчии, катаклазиты, лимониты.

8 .  Круговорот минерального вещества на планете. Характеристика магматических, метаморфических и осадочных горных пород.

Магматические горные породы — это породы, образовавшиеся непосредственно из магмы (расплавленной массы преимущественно силикатного состава, образованной в глубинных зонах Земли), в результате её поступления в верхние горизонты Земли, охлаждения и застывания. В зависимости от условий застывания различают интрузивные (глубинные) иэффузивные (излившиеся) горные породы. Магматические горные породы (интрузивные и эффузивные) классифицируются в зависимости от размера кристаллов, текстуры, химического состава или происхождения. Состоят преимущественно из оксида кремния и по его содержанию делятся на пять групп: ультракислые(больше 70% SiO 2), кислые (65-70%), средние (52-65%), основные (45-52%) и ультраосновные (до 45%). Интрузивные породы образуются за счёт полной раскристаллизации магматического расплава. Образуются глубоко в недрах Земли (от 5 до 40 км) в течение большого времени, при относительно постоянных температуре и давлении. Наиболее распространённые интрузивные породы - это гранитыдиоритыгаббро,сиениты. Эффузивные породы образуются за счёт излияния вулканических лав на поверхность Земли, или в её недрах в приповерхностных условиях (до 5 км). Наиболее распространённые эффузивные породы - это базальтыдиабазыандезитыандезито-базальтыриолитыдацитытрахиты. По степени вторичных изменений интрузивные породы делятся на кайнотипные, «молодые», неизменённые, и палеотипные, «древние», в той или иной степени изменённые и перекристаллизованные главным образом под влиянием времени. К эффузивным породам относятся также вулканогенно-обломочные породы, образующиеся при извержениях вулканов и состоящие из различных обломков пирокластитов (туф, вулканические брекчии). Такие породы называются пирокластическими. В основе химической классификации лежит процентное содержание кремнезёма (SiO2) в породе. По этому показателю выделяют ультракислые, кислые, средние,основные и ультраосновные породы, о чём подробно рассказывается при описании химического состава магматических горных пород. Чем больше SiO2 в породе, тем она светлее. Формы залегания интрузивных пород : Внедрение магмы в различные горные породы, слагающие земную кору, приводит к образованию интрузивных тел (интрузивыинтрузивные массивыплутоны). В зависимости от того, как взаимодействуют интрузивные тела с вмещающими их горными породами выделяют: Согласные (конкордантные) интрузивные тела, внедрявшиеся между слоями вмещающих пород (форма таких тел зависит от складчатой структуры вмещающей толщи). Несогласные (дискордантные), то есть те, что прорывают и пересекают слоистые вмещающие толщи и имеют форму, не зависящую от структуры последней. Среди согласных выделяют: лакколитылополитыфаколитыэтмолитыбисмалитысиллы; Среди несогласных: батолитыштокидайкиапофизыхонолиты. Формы залегания эффузивных пород : Эффузивный магматизм сопровождается излиянием лавы на земную поверхность. Однако нередко извержения вулканов носят взрывной характер, при котором магма не изливается, а взрывается и на земную поверхность выпадают тонкораздробленные кристаллы и застывшие капельки стекла — расплава. Подобные извержения называются эксплозивными (лат. «эксплозио» — взрывать) . Излившаяся на поверхность магма образует различные эффузивные тела, среди которых выделяются: лавовый покровлавовый поток, некк (жерловина), вулканический (экструзивный) купол (пик, игла) и диатрема (трубка взрыва), вулканический конусстратовулканщитовидный вулкан. По типу извержений выделяют трещинные, или линейные, и центральные извержения, что также находит отражение в форме тел. По выражению в рельефе формы залегания эффузивных пород могут быть как положительными (покровыпотокижерловинывулканические куполадиатремы,вулканические конусыстратовулканыщитовидные вулканы), так и отрицательными (кратерымаарылавовые колодцыкальдеры). Структура – совокупность признаков горной породы, обусловленная степенью кристалличности, размерами и формой кристаллов, способом их сочетания между собой и со стеклом, а также внешними особенностями отдельных минеральных зёрен и их агрегатов. Отдельными структурными элементами породы являются кристаллы или зерна округлой, призматической и других форм, микролиты, кристаллиты, стекла. По степени кристалличности структура магматических пород может быть: Полнокристаллической (в породе нет стекла, порода состоит из одних кристаллов); Неполнокристаллической (имеются в породе кристаллы, вкрапления и стекло); Стекловатой (преобладают в породе стекло). По размеру зерен различают следующие структуры: Гигантозернистая (диаметр зерен более 20 мм); Крупнозернистая (с зернами кристаллов от 5 до 20 мм); Среднезернистая (с зернами от 1 до 5 мм); Мелкозернистая (диаметр зерен < 1 мм) макроскопически различима; Афанитовая (зерна видны только под микроскопом). По расположению зерен минералов в породе структуры могут быть как равномернозернистыми (зерна минералов близки по размерам), так и неравномернозернистыми (зерна отличаются по размерам). Примером неравномернозернистой является порфировая структура. По расположению зерен минералов выделяют еще пегматитовую структуру, когда зерна одного минерала содержат закономерные вростки другого минерала.

Метаморфические горные породы — горные породы, образованные в толще земной коры в результате изменения (метаморфизма) осадочных и магматических горных пород вследствие изменения физико-химических условий. Благодаря движениям земной коры, осадочные горные породы и магматические горные породы подвергаются воздействию высокойтемпературы, большого давления и различных газовых и водных растворов, при этом они начинают изменяться. Так как исходным материалом метаморфических горных пород являются осадочные и магматические породы, их формы залегания должны совпадать с формами залегания этих пород. Так на основе осадочных пород сохраняется пластовая форма залегания, а на основе магматических — форма интрузий или покровов. Этим иногда пользуются, чтобы определить их происхождение. Так, если метаморфическая порода происходит от осадочной, ей дают приставку пара- (например, парагнейсы), а если она образовалась за счёт магматической породы, то ставится приставка орто- (например, ортогнейсы). Химический состав метаморфических горных пород разнообразен и зависит в первую очередь от состава исходных. Однако состав может отличаться от состава исходных пород, так как в процессе метаморфизма происходят изменения под влиянием привносимых водными растворами веществ и метасоматических процессов.

Минеральный состав метаморфических пород также разнообразен, они могут состоять из одного минерала, например кварца (кварцит) или кальцита (мрамор), или из многих сложных силикатов. Главные породообразующие минералы представлены кварцем, полевыми шпатами, слюдами, пироксенами и амфиболами. Наряду с ними присутствуют типично метаморфические минералы: гранаты, андалузит, дистен, силлиманит, кордиерит, скаполит и некоторые другие. Характерны, особенно для слабометаморфизованных пород тальк, хлориты, актинолит, эпидот, цоизит, карбонаты.

Физико — химические условия образования метаморфических пород, определённые методами геобаротермометрии весьма высокие. Они колеблются от 100—300 °C до 1000—1500 °C и от первых десятков баров до 20—30 кбаров. Текстура метаморфических пород : Сланцевая: большое распространение в метаморфических породах получили листоватые, чешуйчатые и пластинчатые минералы, что связано с их приспособлением к кристаллизации в условиях высоких давлений. Это выражается в сланцеватости горных пород, которая характеризуется тем, что породы распадаются на тонкие плитки и пластинки. Полосчатая — чередование различных по минеральному составу полос (например, у циполина), образующихся при наследовании текстур осадочных пород. Пятнистая — наличие в породе пятен, отличающихся по цвету, составу, устойчивости к выветриванию. Массивная — отсутствие ориентировки породообразующих минералов. Плойчатая — когда под влиянием давления порода собрана в мелкие складки. Миндалекаменная — представленная более или менее округлыми или овальными агрегатами среди сланцеватой массы породы. Катакластическая — отличающаяся раздроблением и деформацией минералов.

Осадочные горные породы (ОГП) — горные породы, существующие в термодинамических условиях, характерных для поверхностной части земной коры, и образующиеся в результате переотложения продуктов выветривания и разрушения различных горных пород, химического и механического выпадения осадка из воды, жизнедеятельности организмов или всех трёх процессов одновременно. В формировании осадочных горных пород участвуют различные геологические факторы: разрушение и переотложение продуктов разрушения ранее существовавших пород, механическое и химическое выпадение осадка из воды, жизнедеятельность организмов. Случается, что в образовании той или иной породы принимает участие сразу несколько факторов. При этом некоторые породы могут формироваться различным путём. Так, известняки, могут быть химического, биогенного или обломочного происхождения. Это обстоятельство вызывает существенные трудности при систематизации осадочных пород. Единой схемы их классификации пока не существует. Различные классификации осадочных пород были предложены Ж.Лаппараном (1923 г.), В. П. Батуриным (1932 г.), М. С. Швецовым (1934 г.) Л. В. Пустоваловым (1940 г.), В. И. Лучицким (1948 г.), Г. И. Теодоровичем (1948 г.), В. М. Страховым (1960 г.), и другими исследователями. Однако для простоты изучения применяется сравнительно простая классификация, в основе которой лежит генезис (механизм и условия образования) осадочных пород. Согласно ей осадочные породы подразделяются на  обломочные,  хемогенные,   органогенные и смешанные.

9 .   Магматические горные породы, условия образования, классификация. Структура, текстура. Описание характерных (из лотка).

Магматические горные породы — это породы, образовавшиеся непосредственно из магмы (расплавленной массы преимущественно силикатного состава, образованной в глубинных зонах Земли), в результате её поступления в верхние горизонты Земли, охлаждения и застывания. В зависимости от условий застывания различают интрузивные (глубинные) иэффузивные (излившиеся) горные породы. Магматические горные породы (интрузивные и эффузивные) классифицируются в зависимости от размера кристаллов, текстуры, химического состава или происхождения. Состоят преимущественно из оксида кремния и по его содержанию делятся на пять групп: ультракислые(больше 70% SiO 2), кислые (65-70%), средние (52-65%), основные (45-52%) и ультраосновные (до 45%). Интрузивные породы образуются за счёт полной раскристаллизации магматического расплава. Образуются глубоко в недрах Земли (от 5 до 40 км) в течение большого времени, при относительно постоянных температуре и давлении. Наиболее распространённые интрузивные породы - это гранитыдиоритыгаббро,сиениты. Эффузивные породы образуются за счёт излияния вулканических лав на поверхность Земли, или в её недрах в приповерхностных условиях (до 5 км). Наиболее распространённые эффузивные породы - это базальтыдиабазыандезитыандезито-базальтыриолитыдацитытрахиты. По степени вторичных изменений интрузивные породы делятся на кайнотипные, «молодые», неизменённые, и палеотипные, «древние», в той или иной степени изменённые и перекристаллизованные главным образом под влиянием времени. К эффузивным породам относятся также вулканогенно-обломочные породы, образующиеся при извержениях вулканов и состоящие из различных обломков пирокластитов (туф, вулканические брекчии). Такие породы называются пирокластическими. В основе химической классификации лежит процентное содержание кремнезёма (SiO2) в породе. По этому показателю выделяют ультракислые, кислые, средние,основные и ультраосновные породы, о чём подробно рассказывается при описании химического состава магматических горных пород. Чем больше SiO2 в породе, тем она светлее. Формы залегания интрузивных пород : Внедрение магмы в различные горные породы, слагающие земную кору, приводит к образованию интрузивных тел (интрузивыинтрузивные массивыплутоны). В зависимости от того, как взаимодействуют интрузивные тела с вмещающими их горными породами выделяют: Согласные (конкордантные) интрузивные тела, внедрявшиеся между слоями вмещающих пород (форма таких тел зависит от складчатой структуры вмещающей толщи). Несогласные (дискордантные), то есть те, что прорывают и пересекают слоистые вмещающие толщи и имеют форму, не зависящую от структуры последней. Среди согласных выделяют: лакколитылополитыфаколитыэтмолитыбисмалитысиллы; Среди несогласных: батолитыштокидайкиапофизыхонолиты. Формы залегания эффузивных пород : Эффузивный магматизм сопровождается излиянием лавы на земную поверхность. Однако нередко извержения вулканов носят взрывной характер, при котором магма не изливается, а взрывается и на земную поверхность выпадают тонкораздробленные кристаллы и застывшие капельки стекла — расплава. Подобные извержения называются эксплозивными (лат. «эксплозио» — взрывать) . Излившаяся на поверхность магма образует различные эффузивные тела, среди которых выделяются: лавовый покровлавовый поток, некк (жерловина), вулканический (экструзивный) купол (пик, игла) и диатрема (трубка взрыва), вулканический конусстратовулканщитовидный вулкан. По типу извержений выделяют трещинные, или линейные, и центральные извержения, что также находит отражение в форме тел. По выражению в рельефе формы залегания эффузивных пород могут быть как положительными (покровыпотокижерловинывулканические куполадиатремы,вулканические конусыстратовулканыщитовидные вулканы), так и отрицательными (кратерымаарылавовые колодцыкальдеры). Структура – совокупность признаков горной породы, обусловленная степенью кристалличности, размерами и формой кристаллов, способом их сочетания между собой и со стеклом, а также внешними особенностями отдельных минеральных зёрен и их агрегатов. Отдельными структурными элементами породы являются кристаллы или зерна округлой, призматической и других форм, микролиты, кристаллиты, стекла. По степени кристалличности структура магматических пород может быть: Полнокристаллической (в породе нет стекла, порода состоит из одних кристаллов); Неполнокристаллической (имеются в породе кристаллы, вкрапления и стекло); Стекловатой (преобладают в породе стекло). По размеру зерен различают следующие структуры: Гигантозернистая (диаметр зерен более 20 мм); Крупнозернистая (с зернами кристаллов от 5 до 20 мм); Среднезернистая (с зернами от 1 до 5 мм); Мелкозернистая (диаметр зерен < 1 мм) макроскопически различима; Афанитовая (зерна видны только под микроскопом). По расположению зерен минералов в породе структуры могут быть как равномернозернистыми (зерна минералов близки по размерам), так и неравномернозернистыми (зерна отличаются по размерам). Примером неравномернозернистой является порфировая структура. По расположению зерен минералов выделяют еще пегматитовую структуру, когда зерна одного минерала содержат закономерные вростки другого минерала.

10. Метаморфические горные породы, условия образования (виды метаморфизма), классификация. Структура, текстура. Описание характерных (из лотка).

Метаморфические горные породы — Возникли из пород магматических или осадочных путем их изменения под воздействием высоких давлений и температурой, газовых компонентов, т.е. процессов метаморфизма.

Метафорфизм это процесс преобразования исходных горных пород под действием высокого давления , температуры и химически активных и весьма подвижных веществ(газов растворов)

В зависимости от преобладания тех или иных факторов ,вызывающих изменения в горных породах ,различают следующие типы метаморфизма:

1)котактовый – непосредственно связан  с внедрением магмы в земную кору. Вмещающие породы ,подвергаясь воздействию высокой температуры ,газообразных компонентов  и горячих растворов ,претерпевают ряд изменений. Контактовый метаморфизм обычно приурочен к сравнительно узкой зоне непосредственного соприкосновения интрузивных тел с вмещающими породами. При контактовом метаморфизме из известняков образуются новые породы –скарны, а из глин –роговики

2) региональный метаморфизм- метаморфизм, проявляющийся на небольших глубинах и огромных площадях. особенно интенсивно он начинает проявляться с глубины 6-8 км. Зону земной коры , где происходит метаморфический процесс, называют поясом метаморфизма. В этом поясе метаморфизма, в зависимости от действующих температур и давлений, выделяют следующие зоны:

-Верхняя(эпизона)-ей соответствует начальная степень метаморфизма. изменение исходных пород слабое, структура их может сохраниться. Для этой зоны характерны такие породы как филлиты, тальковые и хлоритовые сланцы.

-Средняя(мезозона)- характеризуется более высокой температурой ,односторонним давлением ,породы имеют сланцеватый облик. Здесь развиты слюдяные сланцы, кварциты, мраморы.

--нижняя(катазона)- представляет собой зону наиболее интенсивных давлений и высоких температур. Здесь образуются горные породы , отличающиеся обычно отсутствием сланцеватости. Типичной породой этой зоны является гнейс

3) Динамометаморфизм – связан с тектоническими движениями земной коры . При динамометаморфизме старые структуры разрешатся, возникают новые с отчетливо выраженной ориентировкой минералов.Хрупкие минералы раздробляются ,истираются,пластичные минералы деформируются. Внешним выражением проявления динамометаморфизма служит сланцеватость : порода приобретает способность раскалываться на тонкие плитки ,что вызвано появлением в породе либо очень мелких ,однообразно ориентированных трещин ,либо определенной ориентировкой минеральных зерен. Динамометаморфизм может проявляться не только в сланцеватости ,но также и в дроблении породы ,в разрушении минералов.Такой тип изменения получил название катокластического динамометаморфизма. При сильном дроблении порода превращается в брекчию с угловатыми обломками . При ещё более знакчительном измельчении породы и сильном истирании частиц образуются рассланцованные породы ,называемые милонитами.

Главные отличия метаморфических пород от магматических и осадочных заключаются в их минеральном составе, структурных и текстурных особенностях.

Текстура пород, как пространственная характеристика свойств породы, отражает способ заполнения пространства.

Сланцевая: большое распространение в метаморфических породах получили листоватые, чешуйчатые и пластинчатые минералы, что связано с их приспособлением к кристаллизации в условиях высоких давлений. Это выражается в сланцеватости горных пород, которая характеризуется тем, что породы распадаются на тонкие плитки и пластинки.

Полосчатая — чередование различных по минеральному составу полос (например, у циполина), образующихся при наследовании текстур осадочных пород.

Пятнистая — наличие в породе пятен, отличающихся по цвету, составу, устойчивости к выветриванию.

Массивная — отсутствие ориентировки породообразующих минералов.

Плойчатая — когда под влиянием давления порода собрана в мелкие складки.

Миндалекаменная — представленная более или менее округлыми или овальными агрегатами среди сланцеватой массы породы.

Катакластическая — отличающаяся раздроблением и деформацией минералов.

Структуры метаморфических пород

Понятие «структура» не имеет строгого определения и носит интуитивный характер. Согласно практике геологических исследований «структура» больше характеризует размерные (крупно-, средне- или мелкообломочные) параметры слагающих породу зёрен.

Структуры метаморфических пород возникают в процессе перекристаллизации в твёрдом состоянии, или кристаллобластеза. Такие структуры называют кристаллобластовыми. По форме зёрен различают текстуры [1]:

гранобластовая (агрегат изометрических зёрен);

лепидобластовая (агрегат листоватых или чешуйчатых кристаллов);

нематобластовая (агрегат игольчатых или длиннопризматических кристаллов);

фибробластовая (агрегат волокнистых кристаллов).

По относительным размерам:

гомеобластовая (агрегат зёрен одинакового размера);

гетеробластовая (агрегат зёрен разных размеров);

порфиробластовая;

пойкилобластовая (наличие мелких вростков минералов в основной ткани породы);

ситовидная (обилие мелких вростков одного минерала в крупных кристаллах другого минерала).

11. Инженерно-геологическая характеристика скальных горных пород как оснований сооружений и строительных материалов. Применение в строительстве.

СКАЛЬНЫЕ ГОРНЫЕ ПОРОДЫ

группа горных пород с кристаллизационными структурными связями, в которую входят изверженные и метаморфические породы, осадочные сцементированные породы (известняки и доломиты, многие песчаники с карбонатным и кварцевым цементом и т. п.), а также часть пород с аморфными упругими связями (песчаники с опаловым цементом, кремнистые туфы и т. п.). С. г. п. практически несжимаемы, имеют высокую прочность на раздавливание, но вследствие легкой растворимости быстро разрушаются, если в них циркулирует вода по трещинам и крупным порам

12. Процесс образования осадочных горных пород, степень выветренности горных пород

Осадочные горные породы слагают самую верхнюю часть земной коры, занимая около 75% ее площади.

Осадочные горные породы образуются в результате отложения и переотложения  продуктов разрушения магматических, метаморфических и осадочных пород на поверхности земли. Разрушенный материал переносится водой ветром, гравитационными силами в виде растворенных компонентов , органогенных продуктов. Этот переотложенный материал при погружении блоков земной коры  переходит в возны с повышенным давлением ,температурой ,подвергается процессам диагенеза( преобразование осадка в осадочную горуню породу в результате воздействия  хмических ,физических и биологических факторов)и преобразуется в осадочную,а затем и метаморфическую породу.

Осадочные породы подразделяются на 3 группы:

1)обломочные

2)хемогенные

3)органогенные

Выве́тривание — разрушение горных пород. Совокупность сложных процессов качественного и количественного преобразования горных пород и слагающих их минералов, приводящих к образованию продуктов выветривания. Происходит за счёт действия на литосферу гидросферы, атмосферы и биосферы. Если горные породы длительное время находятся на поверхности, то в результате их преобразований образуется кора выветривания. Различают три вида выветривания: физическое (лёд, вода и ветер) (механическое), химическое и биологическое.

Кора́ выве́тривания — континентальная геологическая формация, образующаяся на земной поверхности в результате выветривания горных пород.

Физическое выветривание.Чем больше разница температур в течение суток, тем быстрее происходит процесс выветривания. Следующим шагом в механическом выветривании является попадание в трещины воды, которая при замерзании увеличивается в объёме на 1/10 своего объёма, что способствует ещё большему выветриванию породы. Если глыбы горных пород попадут, например, в реку, то там они медленно стачиваются и измельчаются под воздействием течения. Селевые потоки, ветер, сила тяжести, землетрясения, извержения вулканов также содействуют физическому выветриванию горных пород. Механическое измельчение горных пород приводит к пропусканию и задерживанию породой воды и воздуха, а также значительному увеличению площади поверхности, что создает благоприятные условия для химического выветривания.

Химическое выветривание. Химическое выветривание — это совокупность различных химических процессов, в результате которых происходит дальнейшее разрушение горных пород и качественного изменения их химического состава с образованием новых минералов и соединений. Важнейшими факторами химического выветривания являются вода, углекислый газ и кислород. Вода — энергичный растворитель горных пород и минералов. Основная химическая реакция воды с минералами магматических пород — гидролиз, приводит к замене катионов щелочных и щелочноземельных элементов кристаллической решётки на ионы водорода диссооциированных молекул воды

Биологическое выветривание производят живые организмы (бактерии, грибки, вирусы, роющие животные, низшие и высшие растения и т. д.)

13. Осадочные  горные породы, условия образования, классификация. Структура, текстура. Описание характерных (из лотка).

Осадочные горные породы происходят в результате разрушения материнских пород и дальнейшего перерождения, изменения этого осадка.

Породы образованные лишь в результате физического выветривания, т.е. из обломков и частиц, прежде существовавших пород, называют обломочными осадочными горными породами. Химические(хемогенные) осадочные горные породы образовались вследствие преобладающего химического выветривания. Глинистые породы, образованные при физическом и химическом выветривании. Осадочные породы, значительная часть которых состоит из остатков растений и скелетов или раковин организмов называются органическими(органогенными). Самостоятельной разновидностью пород  являются пирокластические(вулканогенно-осадочные), состоящие из обломков эффузивных пород, вулканического пепла.

Классификация осадочных горных:

Обломочные:

-Сцементированные (Песчаник, конгломерат, брекчия)

-Несцементированные(Валуны(d>200мм), Галечники(d=10-200мм), Гравий(d=2-10мм),      Песок (d=0,5-2мм), Пыль(d=0,05-0,005мм), Глинистые частицы(d<0,005мм)

2) Глинистые:

-Мягкие связные: глины(>30%), Суглинки(10-30%), супеси(3-10%), %-содержание глинистых частиц.

-Скальные: Алевролиты – 50% частиц, d=0,01-0,1;

3) Химические: Известняк, Доломит,  Гипс, Каменная соль

4) Органические: Известняк, Мел, Торф, Уголь.

Структурой осадочных пород называют их строение, определяемое величиной, формой и характером поверхности частиц или их агрегатов, слагающих породу, их взаимным расположением и соотношением, наличием и характером связей между ними. Она различна и зависит от происхождения.

Структура обломочных и глинистых пород:

- Грубообломочная:d>100мм (Камни и валуны),d=100-40мм (Галька(щебень)),d=40-2мм (Гравий (дресва)

- Песчаная: d = 2-0,05мм (Песок)

- Пылеватая: d = 0,05 – 0,005мм (Пыль)

- Глинистая: d < 0,005мм (Глина)

Структура химических пород:

- Грубозернистая: d >1мм Зёрна представляют крупные кристаллы

- Крупнозернистая: d = 1-0,5мм Зёрна на глаз хорошо видны

- Среднезернистая: d = 0,5-1мм Зёрна на глаз плохо видны

- Мелкозернистая: d <0,1 мм Зёрна на глаз незаметны

- Разнозернистая: d – Разные,  Неоднородный состав

Текстурой осадочных горных пород называют совокупность признаков строения, определяемое ориентировкой и относительным расположением составных частей породы.  Независимо от их происхождения она может быть:

- неоднородной, когда частицы располагаются безо всякого порядка и ориентировки,

- микрослойной и плойчатой, когда частицы расположены ориентированно, тонкими  слойками,

- флюидальной (перемятой), возникающей в результате движущихся, например оползневых масс.

        Помимо указанных текстур у осадочных пород встречается ещё пористая, характеризующаяся наличием в породе пор и пустот различного размера.

14. Классификация обломочных и глинистых пород (по гранулометрическому составу). Описание характерных (из лотка).

Наименование и размер частиц

Наименование несцементированных пород

Наименование сцементированных пород

Валуны(глыбы):

Крупнее 800

Средние 800-400

Мелкие 400-200

Валунные(глыбовые): доля фракций крупнее 200мм составляет >50%

Конгломераты валунные, брекчии глыбовые

Галька(щебень):

Крупная 200-60

Средняя 60-40

Гравий 40-10

Галечниковые – доля фракций крупнее 10мм составляет >50%

Конгломерат крупногалечный, брекчия крупнощебниская

Конгломерат среднегалечный, брекчия среднещебнистая

Конгломерат мелкогалечный, брекчия мелкощебнистая

Гравий(дресва):

Крупные 10-4

Мелкие 4-2

Гравийные(дресвяные) – доля фракций крупнее 2мм составляет >50%

Гравелит

Песок:

Грубый 2-1

Крупный1-0,5

Средний 0,5-0,25

Мелкий 0,25-0,1

Тонкий 0,1-0,05

Песок гравелистый – доля частиц крупнее 2мм составляет 25%

Песок крупный – доля частиц крупнее 0,5мм составляет 50%

Песок средний – доля частиц крупнее 0,25мм составляет 50%

Песок мелкий – доля частиц крупнее 0,1мм составляет 75%

Песок пылеватый – доля частиц крупнее 0,05мм составляет 75%

Песчаник грубозернистый

Песчаник крупнозернистый

Песчаник среднезернистый

Песчаник мелкозернистый

Песчаник тонкозернистый

Пыль:

Крупная 0,05-0,02

Мелкая 0,02-0,005

Супесь(песок глинистый)

Алевролит

Глина(пелит) <0,005

Глина суглинок(глина песчанистая)

Аргиллит

15. Классификация химических и органических горных пород. Описание характерных (из лотка).

1) Карбонатные: Химические(известняк, доломит, мергель), Органические(известняк, органогенный)

2) Кремнистые: Хим.(Яшма), Орг.(диатомит, трепея, опока)

3) Галоидные и серно-кислые: Хим.(Гипс, ангидрит, каменная соль, сильвинит)

4) Глиноземные: Хим.(Латерит, боксит)

5) Фосфатные: Хим.(Фосфарит, фосфорит глиноподобный, фосфорит известкоподобный

6) Железистые: Хим.(Окисные руды, карбонатные и силикатные железистые руды)

7) Каустобиолиты: Органические(Горючий сланец, бурый и каменные угли)

8) Особые: Химические(почва, ил, торф, сапропели)

16. Инженерно-геологическая характеристика нескальных  горных пород как оснований сооружений и строительных материалов. Применение в строительстве.

Осадочные горные породы, в отличие от магматических горных пород, невозможно однозначно охарактеризовать как основания сооружений. Они обладают, в большинстве своем, невысокой несущей способностью  – до 1,0 – 1,5 МПа, модуль общей деформации у них чаше всего не превышает 30 – 40 МПа. Галечники, гравийные и песчаные породы обладают высокими коэффициентами фильтрации, (до 30 м/сут), а глинистые породы существенно изменяют свои физико-механические свойства при изменении влажности. Выводы об осадочных горных породах, как основаниях сооружений, производятся на основе комплекса инженерно-геологических изысканий строительных площадок.

Применение в строительстве: как щебень , как строительный и облицовочный камень, для раствора штукатурки, теплоизоляционный камень, в качестве гидравлических добавок в цемент.

17. Предмет гидрогеология. Положительные и отрицательные факторы воздействия подземных вод. Общие сведения о подземных водах.

 Гидрогеология- наука, изучающая происхождение, условия залегания, состав и закономерности движений подземных вод. Также изучается взаимодействие подземных вод с горными породами, поверхностными водами и атмосферой.

Положительные и отрицательные стороны:

Подземные воды в одних случаях рассматриваются с точки зрения их использования для водоснабжения, орошения и обводнения территорий, в других случаях — являются отрицательным фактором, усложняющим и удорожающим строительство. К отрицательным явлениям, обусловливаемым наличием подземных вод, относятся, напр., подтопление и заболачивание ценных земель на береговых участках водохранилищ и каналов, на площадках пром. и гражданского стр-ва, приток подземных вод и обводнение строит, котлованов, шахт, карьеров и т. д.

Грунтовые, или иначе, подземные воды появляются, когда под землю проникают атмосферные осадки либо вода из открытых водоемов – прудов, озер или рек. Такие воды называют инфильтрационными. 
Воды, которые образовались из-за конденсации атмосферного пара, называют конденсационными.

Пласт породы, которые при вскрытии дает воду называется водоносным. Если вода не в состоянии проникать через породу, такая порода называется водоупорной.
Фактически, благодаря наличию пустот в любой породе, абсолютно водоупорных пород не существует.
Хорошую водопроницаемость имеют трещиноватые скальные породы, средние и крупные пески, гравий и галечники. Полностью водоупорными породами являются невыветрившиеся скальные породы и глины. Мергели, глинистые пески и суглинки являются полупроницаемыми для воды породами.

18.  Распределение воды на Земле. Круговорот воды на планете. Ежегодный баланс воды над Землей.

Мировой океан, соленые воды 1120-1300млн

Атмосфера 0.013млн

Подземные воды 60-100млн

Почвенные воды 50- 90млн

Ледники 20-30млн

Воды озер и рек 1-4 млн

Воды в растениях и животных 0.006 млн

Круговорот воды на земле :

Круговорот воды в природе (гидрологический цикл) — процесс циклического перемещения воды в земнойбиосфере. Состоит из испарения, конденсации и осадков.

Моря теряют из-за испарения больше воды, чем получают с осадками, на суше — положение обратное. Вода непрерывно циркулирует на земном шаре, при этом её общее количество остаётся неизменным.

Главный энергетический двигатель круговорота воды — Солнце. Солнечные лучи нагревают воду, и она интенсивно испаряется. Молекулы воды оказываются в атмосфере, причем половина их сосредоточена в нижнем полуторакилометровом слое воздуха. С высотой температура воздуха постепенно падает, поэтому пары воды на определенной высоте насыщаются и конденсируются в капельки воды или кристаллы снега, формируя облака. Облака проливаются дождем или выпадают в виде снега. Этот процесс идет непрерывно. Испарившаяся вода находится в атмосфере всего 8 — 9 дней, затем снова возвраща-К ется в океан, озеро,болото, реку или недра Земли.

Элементы баланса

Объем воды км3/год

Слой воды, мм

% от расхода

Земной шар в целом

Испарение

-577060

-1132

100

Атмосферные осадки

+577060

+1132

100

19. Виды воды в горных породах (парообразная, гигроскопическая, пленочная, капиллярная и т.д.). Зависимость величины удельной поверхности минеральных частиц от их размеров

1. Вода в форме пара. Этот вид воды присутствует в воздухе, заполняющем трещины и пустоты между частицами породы.

2. Вода в форме льда. Лёд в почвах и породах может присутствовать как в виде отдельных кристаллов, так и в форме скоплений льда (линз, прослоев). Наиболее широко эта форма нахождения воды распространена в области развития многолетней мерзлоты.

3. Кристаллизационная и конституционная вода. Эти виды вод являются составными частями минералов, входя в их состав в виде молекул или (OH)- -групп, то есть находятся в химически связанном состоянии.

3.1. Кристаллизационная вода. Этот вид воды входит в состав минералов в виде молекул H2O в постоянном для каждого минерала количестве (например, гипс – CaSO4.2H2O, мирабилит – Na2SO4.10H2O).

3.2. Цеолитная вода. Цеолитная вода входит в состав минералов в виде молекул Н2О, число которых в составе минерала непостоянно и может меняться в широких пределах без нарушения физической однородности минерала. Этот вид воды характерен для минералов группы цеолитов, относящихся к каркасным алюмосиликатам. Их особенностью является наличие больших полостей (занимающих до 50% объема) в структуре каркаса, вмещающих катионы Ca2+, Na+, K+ и молекулы воды. В зависимости от условий (температуры, влажности) количество молекул воды в составе минерала изменяется. Цеолитная вода часто рассматривается как разновидность кристаллизационной.

3.3. Конституционная вода. Присутствует в минералах не в молекулярной форме, а в форме гидроксильной группы (OH)-, занимающей определенную позицию в кристаллической решетке минерала. Этот вид воды может быть выделен только с полным разрушением структуры минерала.

4. Физически связанная вода. Этот вид воды присутствует на поверхности частиц. Разделяется на две разновидности.

4.1. Прочносвязанная (гигроскопическая). Образуется при адсорбции частицами молекул воды из паров. Гигроскопическая вода окутывает поверхность частиц сплошной или прерывистой плёночкой и очень прочно удерживаемой на них (под давлением до 10000 атм).

4.2. Слабосвязанная (пленочная). Располагается поверх прочносвязанной, образуя на поверхности частиц «вторую плёнку». Сила связи между собственно пленочной водой и гигроскопической водой, окутывающей частицы пород, относительно слабая. В силу этого пленочная вода находится в жидком состоянии (обладая при этом повышенной вязкостью) и способна медленно передвигаться от частиц с большей толщиной плёнок к частицам с меньшей толщиной плёнок. Этот вид вод широко распространен в почвах. В породах наибольшее содержание физически связанной воды отмечается в глинах (наиболее тонкодисперсных породах).

Гигроскопическая, плёночная и гравитационная вода(рис)

а - частицы с неполной гигроскопичностью; б - частицы с полной гигроскопичностью; в, г - частицы с плёночной водой (вода движется от частицы с г к частице в); д - частицы с гравитационной водой

5. Свободная вода.

5.1. Капиллярная вода. Капиллярная вода располагается в тонких трещинах и порах пород и удерживается в них силами поверхностного натяжения.

5.2. Гравитационная вода. К этому виду относятся воды, перемещающиеся (фильтрующиеся) под действием силы тяжести и напорного градиента в толще пород по сообщающимся порам и трещинам. Образование гравитационных вод происходит при насыщении всех пор и трещин породы водой.

20. Классификация подземных вод по происхождению. Другие классификации (гидравлическим признакам, солености, минерализации и др.).

В зависимости от происхождения выделяются подземные воды нескольких типов: 1) инфильтрационные, 2) конденсационные, 3) седиментогенные, 4) «ювенильные» (или магмогенные).

Инфильтрационные подземные воды образуются в результате просачивания (инфильтрации) в глубину атмосферных осадков, выпадающих па земную поверхность. Как известно, на земном шаре происходит непрерывный влагооборот, в котором принимают участие атмосферные, поверхностные и подземные воды. Вода океанов, морен, рек под влиянием солнечного тепла испаряется и насыщает парами воздух. Воздушные массы, непрерывно перемещаясь, переносят пары в пределы суши, где они при благоприятных условиях сгущаются и выпадают па поверхность Земли в виде атмосферных осадков. Здесь они расходятся по трем путям: одна часть стекает по склонам в ручьи и реки, которые несут свои воды в моря и океаны; вторая испаряется с поверхности Земли и третья просачивается в глубину, где и происходит накопление подземных вод. Последние в свою очередь движутся по направлению к рекам и морям. Одним из доказательств именно такого происхождения подземных вод (инфильтрации) может служить качественное и количественное изменение воды в колодцах во время дождливой погоды. Есть основание полагать, что инфильтрация — основной источник пополнения запасов подземных вод.

Конденсационные подземные воды. В некоторых климатических зонах, например в пустынях, наблюдаются явления, которые трудно объяснить инфильтрационной теорией происхождения подземных вод. При малом количестве атмосферных осадков с крайне неравномерным их распределением во времени (по нескольку месяцев совсем не бывает дождя) и при огромном испаряемости в пустынях пег условий для пополнения подземных вод путем инфильтрации. Между тем на некоторой глубине от поверхности повсеместно в пустынях обнаруживается слой влажных пород пли скопление подземной воды.  Накоплением влаги в почве конденсационным путем можно объяснить то явление, что во многих случаях, несмотря на отсутствие дождей в течение длительного периода, посевы не гибнут. В это время почва с поверхности сильно иссушается, но растения получают влагу, накопившуюся конденсационным путем в более глубоких горизонтах, что и способствует сохранению их. Конденсация протекает и в других климатических зонах — умеренных и влажных, но- в смысле пополнения запасов подземных вод она имеет подчиненное значение в сравнении с инфильтрацией атмосферных осадков. Наряду с конденсацией водяных паров Л. Ф. Лебедев всегда отводил большую роль и процессам инфильтрации.

Седиментогенные подземные воды (лат. scdimen-tum — осадок). Это воды морского генезиса, образовавшиеся в процессе накопления морских осадков в последующего их изменения. Морская вода с растворенными в пей солями всегда пропитывает иловые осадки, постоянно накапливающиеся на дне моря. В ходе прогибания земной коры и дальнейшего осадконакопления и диагенеза под влиянием все увеличивающегося давления эта вода начинает выжиматься вверх. Это особенно имеет место в алеврнто-тлипнстых осадках. Благоприятные условия для формирования седиментогенных подземных вод создаются па большой глубине (несколько километров) при захоронении их мощными водонепроницаемыми пли слабопроницаемыми слоями.  Вместе с тем в ходе геологического развития под влиянием различных факторов седиментогенные воды претерпевают значительные изменения. Иногда происходит, сменимте их с подами других генетических типов, пли даже полное вытеснение их инфильтрационными водами.

«Ювенильные» (девственные) подземные воды. Многие источники подземных вод в областях современной или недавней вулканической деятельности молодых гор обладают повышенной температурой и содержат в растворенном состоянии необычные для поверхностных условий соединения и газовые компоненты. Для объяснения происхождения таких вод австрийским геологом Э. Зюссом в 1902 г. была выдвинута так называемая ювенильная теория. По его представлениям, они могли образоваться из газообразных продуктов, выделяющихся в изобилии из магмы при ее остывании. Попадая в области с более низкими температурами, водяные пары начинают конденсироваться и переходить в капельножидкое состояние, образуя особый генетический тип подземных вод.

Однако пары воды, выделившиеся из магмы на глубине, так же как и другие газообразные компоненты, проникая вверх по разломам в земной коре, могут встречаться и смешиваться с обычными подземными водами инфильтрационного происхождения и в таком случае поступают на поверхность в смешанном виде.

С другой стороны, инфильтрационные подземные воды при благоприятных условиях могут проникать па большую глубину, в область более высоких температур, где они нагреваются, обогащаются растворенными минеральными веществами и газами и существенно изменяют свой первоначальный состав.

Подземные воды представляют собой природные растворы, содержащие свыше 60 химических элементов, а также микроорганизмы. Сумма растворенных в воде веществ, исключая газы, определяет её минерализацию (выражаемую в г/л или мг/л).

По степени минерализации подземные воды подразделяют (по классификации В. И. Вернадского) на следующие группы:

пресные - воды с минерализацией до 1 г/л,

солоноватые - от 1 до 10 г/л,

солёные - от 10 до 50 г/л,

подземные рассолы - более 50 г/л (в ряде классификаций принято значение 36 г/л, соответствующее средней солёности вод Мирового океана).

В основу классификации подземных вод по химическому составу положено соотношение наиболее распространенных в и их составе анионов (HCO-, SO42-, Cl-) и катионов (Ca2+, Mg2+, Na+). При описании химических типов вод сначала указывается анионный состав, при этом анионы указываются в порядке убывания; затем в аналогичном порядке приводится состав катионов.

Минерализация и химический состав подземных вод зависит от сочетания ряда факторов: происхождения вод, взаимодействия подземных вод с вмещающими породами, условий водообмена. Рассмотрим влияние этих факторов.

Происхождение вод. Инфильтрационные воды, образующиеся за счет поступления с поверхности, обычно имеют низкую минерализацию, по составу преимущественно гидрокарбонатные кальциевые и магниевые, обогащённые кислородом. Конденсационные воды пресные. Седиментационные воды, образованные за счёт захоронения древних вод морского происхождения, обычно наследуют особенности состава последних – они хлоридные натриевые или хлоридные кальциево-натриевые; захороненные воды ледниковых отложений ультрапресные. Состав эндогенных вод (и вод, развитых в зоне влияния потоков эндогенных флюидов) обладает большим разнообразием. Содержащиеся в их составе летучие компоненты (CO2, HCl, H2S и др.) придают им высокую агрессивность, способствующую выщелачиванию вмещающих пород и формированию сложного химического состава вод (например, известная группа Кавказских минеральных вод - «Ессентуки», «Новотерская» и др., связанных с областью внедрения неогеновых магматических пород).

Взаимодействие с вмещающими породами. Воды, фильтруясь через толщи пород, растворяют их, обогащаясь рядом элементов. Так при растворении соленосных толщ сложенных галитом (NaCl) воды приобретают хлоридный натриевый состав; при фильтрации через известняки - гидрокарбонатный кальциевый и т.д.

Условия водообмена определяют интенсивность участия подземных вод в гидрологическом цикле. В зоне интенсивного водообмена, где интенсивно протекают процессы круговорота вод («разбавление» вновь поступающими пресными инфильтрационными водами, разгрузка водоносных горизонтов родниками, относительно недолгое время взаимодействия с вмещающими породами) воды чаще гидрокарбонатные, богатые кислородом и азотом (газами воздушного происхождения), с низкой минерализацией. Зоне замедленного водообмена свойственны солоноватые воды многокомпонентного состава. Зона весьма замедленного водообмена, соответствующая нижней части артезианских бассейнов, представлена преимущественно солёными водами и рассолами (с минерализацией до 600 г/л), содержащим углеводородные газы и сероводород. В бассейнах Восточно-Европейской платформы мощность зоны пресных подземных вод варьирует от 25 до 350 м, солёных вод — от 50 до 600 м, рассолов — от 400 до 3000 м.

21. Классификация подземных вод по условиям залегания. Схемы залегания.

Подразделение подземных вод на ряд типов может быть осуществлено по различным признакам: по происхождению, условиям залегания, гидравлическим свойствам, химическому составу, возрасту и т. п. Имеется много различных систем классификации.

Подразделение подземных вод по их происхождению приведено выше. По условиям залегания выделяются три основных типа подземных вод: верховодка, грунтовые воды и напорные межопластовые, или артезианские, воды. Иногда выделяют межпластовые безнапорные воды.

Рис. 3. Схема залегания грунтовой воды и соотношение ее с верховодкой:

/ — зона аэрации; // — зона насыщения водой (грунтовая вода); /// — водоупорное ложе; IV — зона капиллярного поднятия; V — верховодка; / — песок; 2 — водонасыщенный песок; 3 — глина; 4 — тяжелый суглинок; 5 — источник; 6 — направление движения грунтовых вод; 7 — зеркало, или уровень, грунтовых вод

Верховодка. К верховодке относятся подземные воды, залегающие на небольшой глубине от поверхности земли в зоне аэрации. Отличие верховодки от грунтовых вод в основном заключается в том, что она располагается выше них и, кроме того, ограничена площадным распространением. Это периодически существующие локально развитые подземные воды, не имеющие регионально выдержанного водоупора. Они накапливаются на поверхности небольших линз или перемежающихся слоев водонепроницаемых и полупроницаемых горных пород. Таковы, например, линзы морен в флювиогляциальных отложениях, погребенные почвенные горизонты в лёссовидных суглинках, глинистые линзы в песчаном аллювии и т. п. (рис. 3). Мощность верховодки (0,5—1, редко 2—3 м) и ее уровень подвержены значительным колебаниям, которые находятся в соответствии с климатическими изменениями. Наибольшей величины мощность верховодки достигает весной или осенью. Часто, при малом количестве осадков, верховодка совсем исчезает. Большое количество таких линз . верховодки можно наблюдать в степных районах юго-востока европейской части СССР, где они обычно локализованы под степными блюдцами и другими понижениями рельефа, развитыми на поверхности лессовидных суглинков. Местное население использует эту воду для водоснабжения.

Грунтовые воды. Грунтовые воды пользуются большим распространением. Это воды первого от поверхности постоянного водоносного горизонта, залегающего на первом более или менее выдержанном водонепроницаемом слое. Они могут накапливаться как в рыхлых пористых антропогеновых и доантропогеновых породах, так и в трещиноватых твердых горных породах. Отсутствие водоупорной кровли обусловливает питание их на всей площади распространения, или, иначе, область питания грунтовых вод совпадает с областью их распространения.

В грунтовых водах следует различать верхнюю поверхность, или зеркало грунтовых вод, и водоупорное ложе (водонепроницаемая горная порода, подстилающая грунтовые воды) (см. рис. 3). Порода, насыщенная водой, называется водоносным слоем или водоносным горизонтом.

Мощность водоносного слоя — расстояние от зеркала грунтовых вод до водоупорного ложа. Грунтовые воды по своим гидравлическим особенностям — безнапорные или обладающие небольшим местным напором. Уровень грунтовых вод подвержен достаточно резким колебаниям в зависимости от метеорологических условий. К зеркалу грунтовых вод примыкает капиллярная кайма, в которой поры породы лишь частично заполнены водой, поднимающейся по капиллярам.

Движение грунтовых вод. Зеркало грунтовых вод редко бывает горизонтальным. Часто оно повторяет, в несколько сглаженном виде, рельеф поверхности и имеет четко выраженный наклон в сторону пониженных мест. Происходит это вследствие того, что подземные воды находятся в непрерывном движении. Они двигаются в виде грунтового потока, подчиняясь силе тяжести, в направлении к оврагам, рекам, морям и другим понижениям рельефа, где происходит их разгрузка в виде источников. Эти области называются областями разгрузки, или областями дренирования. Грунтовые воды движутся по порам и нешироким трещинам в виде отдельных тонких струек, параллельных друг другу. Такой вид движения называется ламинарным. Скорость движения подземных вод зависит от водопроводимости горных пород, а также от гидравлического уклона зеркала воды. Под уклоном понимается отношение  где h — превышение уровня воды в одной точке над уровнем воды в другой; l — расстояние между двумя точками. Уклон зеркала грунтовых вод называют также напорным градиентом и обозначают буквой I. Действительная скорость движения грунтовых вод в сравнении со скоростями течения рек относительно невелика. В песках мелкозернистых и однородных скорости движения воды при больших уклонах могут достигать 1—5 м/сут, в крупнозернистых гравийных песках— 15—20 м/сут, а в галечниках и сильно трещиноватых закарстованных известняках 100 м/сут, а иногда значительно больше.

Режим грунтовых вод. Уровень, количество и качество грунтовых вод с течением времени меняется. Они чувствительно реагируют на изменение внешних гидрометеорологических условий, будучи тесным образом связаны с водным режимом Земли.

Основным ведущим фактором при этом являются климатические условия и особенно количество атмосферных осадков. В многоводные годы, когда атмосферных осадков выпадает много, уровень грунтовых вод повышается, в маловодные годы, наоборот, понижается. Иногда колебания уровня имеют резко выраженный сезонный характер и в течение года достигают нескольких метров. При этих колебаниях некоторые слои пород периодически то заполняются водой, то осушаются. Таким образом, па пространстве от поверхности Земли до водоупорного ложа отчетливо выделяются 8 зоны: 1) зона аэрации, располагающаяся над уровнем грунтовых вод, она не заполнена водом, и атмосферные осадки через нее лишь просачиваются в нижележащие, зоны; 2) зона п е р и о д и ч е с к о г о н а с ы щ е н и я в од ой, расположенная между минимальным уровнем подземных вод, соответствующим засушливым периодам, и наивысшим, устанавливающимся в многоводные периоды.

В районах с влажным и умеренным климатом реки как правило дренируют грунтовые воды, зеркало которых наклонено к реке. Однако соотношение уровней грунтовых и речных вод изменяется в разное время года. Во время паводков в реке, когда уровень воды в ней резко повышается, происходит поднятие уровня грунтовых вод в прибрежной полосе и возникает обратный уклон его (от реки) (рис. 5, А). При спаде уровня паводковых вод уровень грунтовых вод в прибрежной полосе также снижается и в конце концов приобретает свой обычный уклон.

В районах с засушливым климатом часто наблюдается обратная картина, уровень грунтовых вод понижается от реки и, следовательно, питание их происходит речными водами . Это имеет место у рек Амударьи и Сырдарьи и других, получающих основное питание от таяния ледников и снега в горах. При пересечении ими пустынных пространств, они теряют часть своего расхода на питание подземных вод. Следует отметить, что в настоящее время для многих районов фактором, оказывающим существенное влияние на режим грунтовых вод, является хозяйственная деятельность человека (отбор воды для -водоснабжения промышленных предприятий и населенных пунктов, мелиоративные мероприятия, гидротехническое строительство и т. п.). Изменение режима грунтовых вод имеет большое практическое значение при решении ряда народнохозяйственных задач, поэтому изучению его уделяется огромное внимание. При решении вопроса о водоснабжении какого-либо населенного пункта необходимо учитывать наиболее низкое положение уровня грунтовых вод, ниже которого и следует закладывать эксплуатационные скважины и колодцы. Иначе нужно подходить к оценке изменения уровня грунтовых вод при строительстве различного рода сооружений. Здесь особое значение приобретает правильная оценка возможных повышений уровня. Всякое заключение о влиянии грунтовых вод на фундаменты сооружений должно учитывать сведения о наиболее высоком стоянии грунтовых вод для данной местности. При устройстве различных водохранилищ необходимо учитывать величину подпора грунтовых вод в берегах и его влияние па различные сооружения. В комплекс исследований подземных вод неотъемлемой частью входит изучение их режима во времени. Исследования сводятся к длительным (многолетним) стационарным наблюдениям над уровнем грунтовых вод, их температурой, химическим составом, над количеством выпадающих атмосферных осадков и температурой воздуха и над изменением уровня воды в поверхностных водоемах и реках, с которыми обычно связаны грунтовые воды. В настоящее время в различных районах СССР организованы и работают специальные,государственные режимные гидрогеологические станции и, кроме того, существует много ведомственных станций.

Рис. 6. Схема залегания межпластовых ненапорных вод:

1 — водонепроницаемые породы; 2 — водопроницаемые породы; 3 — грунтовые воды; 4 — межпластовые воды; 5 — область питания; 6 — источник

Безнапорные межпластовые воды. Помимо грунтовых вод иногда выделяются безнапорные межпластовые воды, отличающиеся от грунтовых вод тем, что находятся между двумя выдержанными ведоупорными пластами (рис.6). Питание их происходит не на всей площади распространения водоносного слоя, а только в месте выхода его на поверхность (а).

Обычно такие воды развиты в условиях расчлененного рельефа и залегают, выше базиса эрозии (местной гидрографической сети). «Они не заполняют полностью водоносного слоя, не имеют соприкосновения с водонепроницаемой кровлей и характеризуются свободной ненапорной поверхностью. На береговых склонах оврагов и рек часто образуются источники, или родники, при вскрытии контакта водоносных и водоупорных пород. Таким образом, межпластовые воды являются проточными и по условиям передвижения аналогичны грунтовым нисходящим водам,, подчиняющимся законам силы тяжести.

Рис. 8.7. Схема залегания артезианских вод:

1 — область питании; 2—водоносный слой; 3— одотчфоппцаеыые слон; 4 — самоизливающийся колодец; 5— колодец, в котором напорная вода не изли­вается; 6 — пьезометрический уровень напорных вод (рис. Н. П. Костенко)

Напорные, или артезианские, межпластовые воды. К напорным водам относятся, воды, залегающие между двумя водонепроницаемыми пластами горных пород ниже базиса эрозии. Артезианские воды получили свое название от провинции Артуа (фр. artesien) во Франции, которая в древности называлась Артезия. Там впервые в Европе в 1226 г. при помощи трубчатых колодцев получена самоизливающаяся подземная вода.

Наиболее благоприятные условия для формирования напорных вод создаются в пределах различных прогибов земной коры, а также при моноклинальном залегании горных пород? В первом случае (рис. 8.7, 8,8, I) водоносные слои изогнуты, в виде мульды или чаши.< Областью питания подземных вод является место выхода водоносного слоя на поверхность. Атмосферные воды, поступая в водопроницаемые слои путем инфильтрации или инфлюации (лат. influo — втекаю), движутся к центральным частям мульды и заполняют весь водоносный слой, находясь под гидростатическим давлением. Если выкопать колодцы или пробурить скважины до водоносного слоя, то подземная вода после ее вскрытия поднимется на значительную высоту. Подземная вода может оказаться под гидростатическим напором и при моноклинальном, или односклопном, залегании пород, особенно в условиях частой смены пород (рис. 8, //), т. е. смены водопроницаемых пород водонепроницаемыми. Вода, поступившая из области питания в водопроницаемые породы, постепенно передвигается по падению слоя и, наконец, достигает глин, не находя далее выхода. Происходит накопление ее в водоносном слое и она оказывается под гидростатическим давлением. Если вскрыть воду колодцем, то она будет обладать напором и поднимется примерно до высоты питания. Подобные же скопления напорных вод возможны в районах тектонических сбросов, когда по линии сместителя водоносные слои оказываются в контакте с водонепроницаемыми породами.

При чередовании водопроницаемых и водонепроницаемых пород, или пород разной проницаемости, в таких структурах могут находиться несколько напорных водоносных горизонтов.

Рассмотренное формирование подземных вод вследствие инфильтрации имеет особенно важное значение в верхних напорных водоносных горизонтах, где наблюдается активный водообмен. К этим горизонтам обычно приурочены подземные воды, пресные или слабо солоноватые. В то же время в глубоких водоносных горизонтах напорные воды всегда соленые, нередко рассолы. А. А. Карцев (1969), Н. Г, Киссин (1967) и другие исследователи отмечают в этих условиях большую роль седиментогенных вод в питании крупных бассейнов напорных вод. По их представлениям, в местах наибольшего прогибания земной коры питание напорных вод происходит путем выжимания седимеитационных вод из алеврито-глинистых отложений под действием геостатического давле­ния, созданного нагрузкой накапливающихся выше отложений. Под давлением глинистые породы испытывают значительное уплотнение и вода, присутствующая в них, выжимается в водопроницаемые слои (пески и др.). уплотнение которых незначительно.

22. Законы движения подземных вод (Дарси, А.А.Краснопольского)

Движение подземных вод происходит при наличии разности гидравлических напоров (уровней). Воды движутся от мест с более высоким напором (уровнем) к местам с низким напором (рис. 34).

Рис. 34. Схема движения (фильтрации) грунтовой воды

Для получения более обоснованных значений коэффициента фильтрации применяются расчетные, лабораторные и полевые методы. Чем больше разность напоров ΔН = Н1 − Н2, тем скорость движения подземных вод будет выше. Отношение разности напоров ΔН к длине пути фильтрации l называют напорным или гидравлическим градиентом I = ΔН / l. Фильтрация в полностью водонасыщенных грунтах при ламинарном режиме движения подчиняется закону Дарси:

Q = kф.F(ΔН/ l) = kфFI,

где Q − расход воды или количество фильтрующей воды через попереч-

ное сечение F в единицу времени, м3/сут;

kф − коэффициент фильтрации, м/сут;

F − площадь поперечного сечения потока воды или водоносного пласта, м2;

ΔН − разность напоров, м;

l − длина пути фильтрации, м;

I − напорный градиент.

Разделив обе части уравнения на площадь сечения F и используя понятие скорости фильтрации ν, т. е. отношение расхода Q к площади поперечного сечения потока, ν = Q/F, получаем

v = kф ·I.

Из этого выражения закона Дарси следует, что скорость фильтрации пропорциональна напорному градиенту в первой степени (при ламинарном движении).

Н1

ΔН

Н2

l

84

Закон Дарси в дифференциальной форме имеет вид:

h = −kф (dН/dl).

Знак «минус» означает, что по пути движения значение напора уменьшается. Если принять, что I = 1, то уравнение v = к·I получает вид ν = kф или kф =ν, т. е. коэффициент фильтрации − это скорость фильтрации при напорном градиенте, равном единице. Поэтому размерность коэффициента та же, что и скорости фильтрации воды, т. е. м/сут, см/с и т. д. Скорость фильтрации по формуле v = Q/F не отвечает действительной скорости движения воды в породе. Это связано с тем, что в формулу входит величина F, отражающая все сечение фильтрующейся породы, а вода, как известно, течет лишь через часть сечения, равную площади пор и трещин породы. Поэтому величина v является кажущейся. Действительную скорость движения воды д определяют с учетом пористости породы:

д = Q / Fn =  / n,

где n − пористость, выраженная в долях единицы. Так как величина пористости всегда меньше единицы, то действительная скорость движения воды всегда значительно выше скорости фильтрации (примерно в 3−4 раза). Например, в галечниках при n = 0,25 действительная скорость движения подземных вод будет в 4 раза выше скорости фильтрации. В глинистых породах часть пор занята связанной водой и вода передвигается только через открытые поры, поэтому в данном случае в формулу вводят не n, а nакт (активную пористость). Закон Дарси, или линейный закон фильтрации, справедлив для преобладающего числа случаев фильтрации в самых разнообразных породах, поэтому его называют основным законом движения подземных вод. Однако закон Дарси не является всеобщим. Движение турбулентного потока не подчиняется закону Дарси. Для выражения фильтрации воды в породах с крупными пустотами и трещинами,  в хорошо промытых галечниках при турбулентном режиме служит уравнение А. А. Краснопольского, характеризующее нелинейный закон фильтрации:

 = kк I , где кк – коэффициент, определяемый опытным путем в полевых условиях.

23. Опасные геологические процессы влияющие на работу сети ЖД ДВ.  Денудация – определение, агенты, результат. Экзогенные и эндогенные процессы.

Геологические процессы делятся на две взаимосвязанные между собой группы: ЭНДОГЕННЫЕ (древнегреч. endon — внутри, т. е. изнутри рожденные) и ЭКЗОГЕННЫЕ (древнегреч. ex — вне, т. е. извне рожденные).

Развитие Земли протекает в непрерывной борьбе этих двух видов процессов между собой. Эндогенные процессы — созидатели, они создают горы, поднятия, впадины и котловины, создают и порождают горные породы, минералы и полезные ископаемые. Экзогенные процессы — разрушители всего того, что создают эндогенные процессы. При этом, правда, разрушая, они создают свой рельеф и новые породы и минералы.

К эндогенным процессам относятся: магматизм, метаморфизм, тектоника, землетрясения (сейсмика). Эндогенные процессы черпают свою энергию из недр Земли, извлекая ее из атомных, молекулярных и ионных реакций, внутреннего давления (гравитации) и разогрева отдельных участков земной коры от перемещения ее слоев под действием изменения скорости вращения Земли.

К экзогенным процессам относятся: работа ветра, подземных и поверхностных текучих вод рек и временных потоков, льда, морей, озер и т. п. Геологическая работа при этом сводится в основном к разрушению горных пород, переносу обломков и отложению их в виде осадков.

Работа всех экзогенных факторов, связанная с разрушением и переносом, называется ДЕНУДАЦИЕЙ. В последующих лекциях мы с вами познакомимся со следующими агентами или факторами денудации: выветриванием, дефляцией (выдувание и развеивание), оползнями, обвалами, карстом, эрозией, экзарацией (exeratio — выпахивание, например ледником), морской и озерной абразией и др. В результате успешной деятельности (из-за вяло текущих эндогенных процессов или их полном затухании) всех этих факторов экзогенной деятельности на месте горного рельефа, всегда создается ПЕНЕПЛЕН, «предельная равнина», или почти равнинная слабохолмистая местность с плоскими столовыми водораздельными частями. Экзогенные процессы получают свою энергию от солнца и из космоса, успешно используют силу тяжести, климат и жизнедеятельность организмов и растений.

24.Физическое и химическое выветривание. Их конечный результат.

Выветривание — совокупность сложных процессов качественного и количественного преобразования горных пород и слагающих их минералов, приводящий к образованию почвы. Происходит за счет действия на литосферу гидросферы, атмосферы и биосферы. Если горные породы длительное время находятся на поверхности, то в результате их преобразований образуется кора выветривания. Различают три вида выветривания: физическое (механическое), химическое и биологическое.

 Физическое выветривание — это механическое измельчение горных пород без изменения их химического строения и состава. Физическое выветривание начинается на поверхности горных пород, в местах контакта с внешней средой. В результате перепадов температур в течении суток на поверхности горных пород образуются микротрещины, которые, со временем, проникают все больше вглубь. Чем больше разница температур в течении суток, тем быстрее происходит процесс выветривания. Следующим шагом в механическом выветривании является попадание в трещины воды, которая при замерзании увеличивается в объеме на 1/10 своего объема, что способствует еще большему выветриванию породы. Если глыбы горных пород попадают, например, в реку, то там они медленно стачиваются и измельчаются под воздействием течения. Селевые потоки, ветер, сила тяжести, землетрясения, извержения вулканов так же содействуют физическому выветриванию горных пород. Механическое измельчение горных пород приводит к пропусканию и задерживанию породой воды и воздуха, а также значительному увеличению площади поверхности, что создает благоприятные условия для химического выветривания.

 Химическое выветривание — это совокупность различных химических процессов, в результате которых происходит дальнейшее разрушение горных пород и качественного изменения их химического состава с образованием новых минералов и соединений. Важнейшими факторами химического выветривания являются вода, углекислый газ и кислород. Вода — энергичный растворитель горных пород и минералов. Основная химическая реакция воды с минералами магматических пород — гидролиз, приводит к замене катионов щелочных и щелочноземельных элементов кристаллической решетки на ионы водорода диссооциированных молекул воды.

25.  Строение кор выветривания. Практическая значимость вопроса

Кора выветривания, - это совокупность различных элювиальных образований верхней части литосферы. Выделяют два типа коры выветривания: автоморфную и вторичную (гидроморфную). Автоморфная кора выветривания сложена несмещенными элювиальными образованиями, в то время как происхождение гидроморфной связано с выносом из автоморфной коры ряда химических элементов. Изучая кору выветривания можно установить особенности климата данной местности в период ее формирования. Из коры выветривания полезные ископаемые извлекаются гораздо легче, чем из материнских невыветренных магматических пород.

КОРА ВЫВЕТРИВАНИЯ континентальная геологическая формация, образовавшаяся на земной поверхности в результате изменения исходных горных пород под воздействием жидких и газообразных атмосферных и биогенных агентов. Продукты изменения, оставшиеся на месте своего образования, называют остаточной корой выветривания, а перемещённые на небольшое расстояние, но не потерявшие связь с материнской породой — переотложенной корой выветривания. Выделяют также инфильтрационную кору выветривания, сформировавшуюся в результате инфильтрации железа, марганца, никеля, кальция, магния, кремния или других элементов, перешедших в раствор при выветривании и вновь отложенных в залегающих ниже выветрелых или невыветрелых породах. Некоторые геологи к коре выветривания относят продукты размыва и переотложения почв, остаточные коры выветривания и горные породы (т.н. аккумулятивная кора выветривания — делювий, пролювий, аллювий и т.д.).

Образование коры выветривания зависит от биоклиматических, геолого-структурных и геоморфологических особенностей, от состава исходных пород, гидрогеологических условий и длительности формирования. Глобальное значение имеет климат. Распределение на поверхности Земли ресурсов тепла и влаги обусловливает широтную зональность размещения основных генетических типов коры выветривания, формирование латеритных поясов и провинций. Внутри поясов геолого-структурные и геоморфологические особенности определяют распространение различных фациальных типов коры выветривания, а от состава исходных пород зависит минеральный состав коры выветривания. Наиболее благоприятны для формирования коры выветривания условия тёплого влажного климата в периоды относительного тектонического покоя. При этом на приподнятых и расчленённых пенепленах, обеспечивающих интенсивный дренаж, образуется мощная и проработанная кора выветривания. В умеренном влажном климате процессы выветривания проявляются в меньшей степени и проникают на незначительную глубину. В условиях аридного и холодного климатов интенсивность изменения пород минимальная. В сухом климате кальций далеко не выносится, и возникают карбонатная и гипсовая коры выветривания. В холодном климате образуется только обломочная кора выветривания малой мощности.

Некоторые типы: Латеритовая кора, Каолиновая кора, Нонтронитовая кора

27.  Эрозия – определение. Водная эрозия. Плоскостной смыв

Эро́зия (от лат. erosio — разъедание) — разрушение горных пород и почв поверхностными водными потоками и ветром, включающее в себя отрыв и вынос обломков материала и сопровождающееся их отложением.

Эрозия почвы— разрушение и снос верхних наиболее плодородных горизонтов почвы в результате действия воды и ветра.

По скорости развития эрозию делят на нормальную и ускоренную. Нормальная имеет место всегда при наличии сколько-либо выраженного стока, протекает медленнее почвообразования и не приводит к заметным изменением уровня и формы земной поверхности. Ускоренная идет быстрее почвообразования, приводит к деградации почв и сопровождается заметным изменением рельефа.

По причинам выделяют естественную и антропогенную эрозию. Следует отметить, что антропогенная эрозия не всегда является ускоренной, и наоборот.

Водная эрозия - процесс разрушения почв, геологических пород и строительных материалов талыми, дождевыми и текучими водами.

ВОДНАЯ ЭРОЗИЯ – процесс разрушения почвенного покрова под действием талых, дождевых или ирригационных вод. Эрозия наблюдается при ливнях исключительной интенсивности и особенно весной при таянии снегов, когда оттаивает только верхняя часть почвы, а нижние слои находятся в замерзшем состоянии и воду еще не пропускают. Как видно из почвенной карты Перм. края на отдельных участках края водная эрозия проявляется в разной степени (слабая и сильная водная эрозия). На интенсивность эрозии влияет положение почвы в рельефе и форма рельефа. Эрозия усиливается на выпуклых, крутых и длинных склонах наиболее распространенных в придолинных участках рек. На юж. склонах, интенсивное таяние снегов определяет протекание эрозионных процессов. Участки, прилегающие к долинам рек в Перм. крае, сильно изрезаны сетью оврагов, логов и балок, что является следствием водной эрозии и способствует ее дальнейшему развитию и формированию смытых почв и образованию намытых почв на днищах овражно-балочных комплексов. Различают природные и антропогенные условия развития эрозии. К природным факторам водной эрозии относится климат (количество, интенсивность и величина капель дождевых осадков, мощность снегового покрова и интенсивность его таяния), рельеф (крутизна, форма и экспозиция склона), почвенные условия (гранулометрический состав, структурность) и растительный покров (наличие дернины, подстилки, проективное покрытие). К антропогенным условиям водной эрозии относится неправильное использование земель человеком, удаление естественного растительного покрова. Водная эрозия подразделяется на поверхностную и линейную. Поверхностная эрозия – смыв верхнего слоя почвы под влиянием стекающих по склону дождевых или талых вод. Пахотный горизонт со временем все больше теряет материал исходного верхнего горизонта и дополняется путем припашки нижних менее плодородных горизонтов. Так формируются смытые почвы. Линейная эрозия – смыв почв в глубину мощной струей воды, стекающей по склону. На первой стадии образуются глубокие струйчатые размывы (до 25-35 см). Дальнейшее их развитие приводит к образованию оврагов и полному уничтожению почвы. По темпам развития принято различать геологическую (нормальную) эрозию и ускоренную. Геологическая эрозия – медленный процесс смыва с поверхности почвы, покрытой естественной растительностью. Потеря почвенного вещества восстанавливается в ходе почвообразования. Ускоренная эрозия связана с удалением естественной растительности, неправильным использованием почвы, в результате чего темп эрозии резко возрастает (рис).

Плоскостной смыв - удаление верхнего слоя почвы или продуктов выветривания горных пород дождевыми и талыми водами, более или менее равномерно стекающими по склонам без постоянных русел. Под влиянием плоскостного смыва склоны становятся положе, так как смываемые сверху частицы откладываются в нижних частях склонов (происходит аккумуляция). По мере движения вниз по склону малые струи воды сливаются в более крупные, способные образовывать эрозионные борозды, промоины и т.п. - дают начало линейным эрозионным формам.

28. Эрозия – определение. Водная эрозия. Линейная эрозия.

Эро́зия (от лат. erosio — разъедание) — разрушение горных пород и почв поверхностными водными потоками и ветром, включающее в себя отрыв и вынос обломков материала и сопровождающееся их отложением. Эрозия почвы— разрушение и снос верхних наиболее плодородных горизонтов почвы в результате действия воды и ветра.

Водная эрозия происходит под воздействием временных потоков атмосферных вод (ливневые дожди, талые воды и т. д.). Различают плоскостную, или поверхностную, и линейную, или глубинную, водную эрозию.  Водная эрозия распространена в районах с сильнорасчлененным рельефом. У нас она наиболее выражена в лесостепной и степной зонах и в горных областях страны. Развитие современной водной эрозии почв на сельскохозяйственных угодьях обусловливается нарушением устойчивого водного режима в процессе эксплуатации земли. Устранить условия, способствующие проявлению эрозии почв, можно путем ослабления концентрации водных потоков и замедления поверхностного стока путем: увеличения поглотительной и инфильтрационной способности почвы, задержания осадков на месте выпадения, отвода или безопасного сброса необходимого количества воды в гидрографическую сеть. Для успешной борьбы с водной эрозией почв на землях, занятых в сельскохозяйственном производстве, необходима комплексная система мероприятий, позволяющих использовать воды поверхностного стока для увлажнения полей и прекращения развития эрозионных процессов. Важнейшие элементы системы мероприятий по защите почв от водной эрозии:

— правильная организация территории, создающая предпосылки для эффективного применения средств борьбы с эрозией;

— противоэрозионная агротехника, обеспечивающая повседневную защиту почв и повышение их плодородия;

— лесомелиоративные мероприятия по борьбе с эрозией почв;

— гидротехнические сооружения, предотвращающие размыв почвы.

Линейная эрозия — это размыв почвы с образованием вначале небольших промоин, развивающихся впоследствии в громадные овраги. Некогда ценные сельскохозяйственные угодья расчленяются многочисленными рытвинами и оврагами и переходят в разряд бросовых земель. Линейная эрозия развивается вслед за плоскостной и охватывает незначительную площадь, но более заметна, чем эрозия плоскостная. Разрушение почвы текущими водами наблюдается и в условиях орошаемого земледелия. Здесь оно проявляется в систематическом выносе почвенных частиц оросительными водами, за что этот вид эрозии и получил название ирригационный.

29. Элювий и делювий. Их образование, распространение и характеристика как оснований сооружений.

Элювий (элювиальные отложения) (лат. eluo — «вымываю») — рыхлые геологические отложения и почвы, формируемые в результате выветривания поверхностных горных пород на месте первоначального залегания или в результате выветривания и последующей аккумуляции его продуктов под действием силы тяжести. Элювиальные отложения формируются на горизонтальных или слабонаклонных поверхностях. Процесс выноса вещества из геологического или почвенного горизонта называется элювиацией. Существует разница в использовании этого термина в геологии и почвоведении. В почвоведении под элювиацией понимается вызываемый прохождением водных осадков через горизонты почвы перенос разрушенных веществ из верхних слоев почвы в нижние. Накопление этих веществ (иллювиальных отложений) в нижних слоях называется иллювиацией. В геологии, элювиалные отложения — это то, что осталось на месте в результате выветривания, а унесенный материал рассматривается как часть другого процесса.

Делю́вий (делювиальные отложения, делювиальный шлейф; от лат. deluo — «смываю») — скопление рыхлых продуктов выветривания горных пород у подножия и у нижних частей возвышенностей. Выделяется также из коллювиальных отложений как коллювий смывания.

Делювий распространён очень широко и образуется в результате переноса этих продуктов дождевыми потоками, талыми водами (плоскостного смыва). Немаловажную роль в этом играет сила тяжести, перемещающая частицы грунта. Таким образом, вследствие делювиальных процессов грунты в верхней части склона разрушаются, в нижней же, напротив, происходит аккумуляция материала.

30.  Овраги, строение, борьба с ними

 Овра́г — форма рельефа в виде относительно глубоких и крутосклонных незадернованных ложбин, образованных временными водотоками.

Овраги возникают на возвышенных равнинах или холмах, сложенных рыхлыми, легко размываемыми породами, а также на склонах балок. Длина оврагов от нескольких метров до нескольких километров. Выделяют молодые (интенсивно развивающиеся) и зрелые овраги.

Овраги наносят большой вред сельскому хозяйству, расчленяя и уничтожая поля. Для предупреждения овражной эрозии эффективны агротехнические приёмы, которые устраняют или уменьшают поверхностный сток и способствуют задержанию влаги на полях. На территории с развивающимися оврагами применяют гидротехнические устройства: водозадерживающие валы, валы-террасы, водоотводные канавы, запруды, подпорные стенки и др., а также производят посадку приовражных и прибалочных лесных полос, облесение и залужение склонов и дна оврагов, благодаря которым прекращается развитие овражной сети

Разработана система мероприятий по предупреждению оврагообразования, прекращению или уменьшению роста существующих оврагов. При организации борьбы с оврагами следует исходить из того, что образование и рост оврагов вызывается концентрированными потоками воды, поступающей с водосборной площади. Наиболее часто они образуются в нижней, самой крутой части склонов балок, лощин и речных долин, или на откосах донных оврагов, в местах, куда стекающая вода поступает концентрированными потоками. Большинство промоин и береговых оврагов, а также часть склоновых и концевых размывов в современный период возникает под действием воды, накапливающейся за искусственными рубежами (дорогами, межами, канавами) и стекающей вдоль этих рубежей в понижения местности. В этих местах, как правило, наблюдается прорыв искусственной преграды и зарождение размыва. Предупредить оврагообразование, прекратить или уменьшить рост существующих оврагов можно такими мероприятиями, которые сокращают величину стока воды с водосборной площади, исключают формирование крупных потоков или безопасно отводят концентрированные потоки на специально выбранные участки склона. Применение комплекса организационных, агротехнических, луголесомелиоративных и гидротехнических мероприятий на водосборной площади в состоянии радикально повлиять на сокращение интенсивности эрозионных процессов и предупреждение образования и роста оврагов.

31. Гравитационные процессы, их классификация

ГРАВИТАЦИОННЫЕ ПРОЦЕССЫ— процессы изменения поверхности Земли под действием силы тяжести. К ним относятся обвалы, камнепады, снежные лавины, оползни, медленное сползание и течение грунтов. Обваливание и осыпание происходят на склонах, крутизна которых более угла "естественного откоса" (35-38°). В горах обвалы достигают крупных размеров — до 1-1,5 км3 Осыпание — постоянный процесс, пульсирующий по интенсивности (обычно увеличивается весной при снеготаянии, а также при землетрясениях). Скорость денудации при осыпании в зависимости от крутизны склонов (за длительный отрезок времени) изменяется в пределах 1,5-0,05 мм в год. Гравитационные процессы оказывают решающее влияние на формирование рельефа, иногда на образование месторождений полезных ископаемых — солей, нефти и т.д. Проявление гравитационных процессов учитывается при расчёте углов откоса в карьерах, определении устойчивости сводов подземных выработок, при строительстве насыпей, дамб. Возможное нежелательное проявление гравитационных процессов вынуждает применять специальные меры — различные виды крепи в выработках, покрытие связующими растворами, посадка определённого вида растений на участках, создающих опасность для ведения горных работ.

КЛАССИФИКАЦИЯ — процесс разделения (сепарации) измельчённых материалов в жидкой или воздушной среде на основе различия в скоростях падения (оседания) частиц разного размера, формы и плотности. Цель — получение продуктов различного гранулометрического состава и плотности. По принципу разделения выделяют классификацию

гравитационную (с разделением частиц в поле силы тяжести) и центробежную (с разделением в поле центробежных сил).

Теория классификации основана на изучении и количественном описании перемещения частиц в жидкой или воздушной среде в частности для мелких частиц, на основе закона Стокса (для сферических частиц), по которому скорость движения (падения) частиц (до 100 мкм в воде и до 50 мкм в воздухе) прямо пропорциональна квадрату поперечника и разностей плотностей частицы и среды и обратно пропорциональна вязкости среды. Различие в скоростях падения частиц определяет процесс разделения. Отношение размеров частиц, имеющих одинаковую скорость падения (гидравлическая крупность), называется коэффициентом равнопадаемости. Эффективность классификации зависит от распределения жидкой фазы по продуктам классификации, неравномерности скоростей потока и его турбулентности по сечению классификатора, формы и плотности частиц, а также конструктивных параметров классификаторов. Трудность классификации возрастает с уменьшением размера частиц. Очень тонкие (менее 10 мкм) частицы сильнее слипаются друг с другом — коагулируют или флоккулируют.

33.Оползни на ДВЖД. Строение оползня. Типы структурных оползней, по форме в плане, по мощности и масштабам проявления.

1. Оползни

оползни - это смещение масс горных пород вниз по склону под действием силы тяжести. Они образуются в различных

породах в результате нарушения их равновесия и ослабления их прочности и вызываются как естественными, так и искусственными причинами. К естественным причинам относятся увеличение крутизны склонов, подмыв их оснований морскими и речными водами, сейсмические толчки и т.п. Искусственными, или антропогенными, т.е. вызванными

деятельностью человека, причинами оползней являются разрушение склонов дорожными выемками, чрезмерный вынос грунта, вырубка леса и т.п. Оползни можно классифицировать по типу и состоянию материала. Некоторые из них полностью состоят из скального материала, другие -только из материала почвенного слоя, а третьи представляют собой смесь льда, камня и глины. Снежные оползни называются лавинами. Например, оползневая масса состоит из каменного материала; каменный материал - это гранит, песчаник; он может быть прочным или трещиноватым, свежим или выветрелым и т. д. С другой стороны, если оползневая масса образована обломками горных пород и минералов, то есть, как говорят материалом почвенного слоя, то можно назвать это оползнем почвенного слоя. Он может состоять из очень тонкой зернистой массы, то есть из глин, или более грубого материала: песка, гравия и т. д.; вся эта масса может быть сухой или водонасыщенной, однородной или слоистой. Оползни можно классифицировать и по другим признакам: по скорости движения оползневой массы, масштабам явления, активности, мощности оползневого процесса, месту образования и др.

С точки зрения воздействия на людей и на проведение строительных работ скорость развития и движения оползня является единственно важной его особенностью. Трудно найти способы защиты от быстрого и, как правило, неожиданного движения крупных масс горных пород, и это часто приносит вред людям и их имуществу. Если оползень движется очень медленно в течение месяцев или лет, то он редко вызывает несчастные случаи, и можно принять предупредительные меры

. Кроме того, скорость развития явления обычно определяет возможность предсказать это развитие, например можно обнаружить предвестники будущего оползня в виде трещин, которые возникают и расширяются в течение какого-то времени. Но на особенно неустойчивых склонах эти первые трещины могут образоваться так быстро или в таких недоступных местах, что их не замечают, и резкое смещение большой массы пород происходит внезапно. В случае медленно развивающихся движений земной поверхности можно еще до крупной подвижки заметить изменение особенностей рельефа и перекос строений и инженерных сооружений. В этом случае есть возможность, не дожидаясь

разрушений эвакуировать население. Однако даже тогда, когда скорость движения оползня не увеличивается, это при больших масштабах явление может создать трудную, а иногда и не разрешимую проблему Другой процесс также вызывающий иногда быстрое движении поверхностных горных пород, - это подмыв подножия склона морскими волнами или рекой. Удобно провести классификацию оползней по скорости движения. В самом общем виде быстрые оползни или обвалы происходят в течение секунд или минут; оползни со средней скоростью развиваются в течение промежутка

времени, измеряемого минутами или часами; медленные оползни формируются и движутся в течение периода продолжительностью от нескольких дней до нескольких лет. По масштабу оползни подразделяются на крупные,

средние и мелкомасштабные. Крупные оползни вызываются, как правило, естественными причинами. Крупные оползни вызываются, как правило, естественными причинами и образуются вдоль склонов на сотни метров. Их толщина достигает 10--20 м и более. Оползневое тело часто сохраняет свою монолитность. Средние и мелкомасштабные оползни характерны для антропогенных процессов. Оползни могут быть активными и неактивными, что определяется степенью захвата коренных пород склонов и скоростью движения. На активность оползней оказывают влияние породы склонов,

а также наличие в них влаги. В зависимости от количественных показателей присутствия воды оползни делятся на сухие,

слабовлажные, влажные и очень влажные. По месту образования оползни подразделяют на горные, подводные, снежные и оползни, возникающие в связи со строительством искусственных земляных сооружений (котлованов, каналов, отвалов пород и т.п.). По мощности оползни могут быть малыми, средними, крупными и очень крупными и

характеризуются объемом смещающихся пород, который может составлять от нескольких сотен кубических метров до 1 млн. м3 и более. Оползни могут разрушать населенные пункты, уничтожать сельскохозяйственные угодья, создавать опасность при эксплуатации карьеров и добыче полезных ископаемых, повреждать коммуникации, туннели, трубопроводы, телефонные и электрические сети, водохозяйственные сооружения, главным образом, плотины. Кроме того, они могут перегородить долину, образовать завальное озеро и способствовать наводнениям. Таким образом, наносимый ими народнохозяйственный ущерб может быть значительным.

34.Условия и причины возникновения оползней. Противооползневые мероприятия

Оползание происходит в рыхлых слабосцементированных породах вследствие того, что крутой и высокий склон по мере подрезания его рекой, водохранилищем, морем теряет свою устойчивость, и значительные горные массы крупными блоками начинают смещаться вниз по склону. Оползневое движение всегда связано с наличием грунтовых вод. Их обилие – необходимое условие оползания. Однако надо себе ясно представлять, что не грунтовые воды служат причиной оползня. Часто мы видим, что крутой склон долин подвержен оползням, а рядом выше или ниже по течению при том же геологическом строении, при таком же водообилии водоносных горизонтов и одинаковой высоте уровня подземных вод никаких оползней нет просто потому, что склон чуть-чуть более отлог. Оползни редко отмечаются на склонах крутизной менее 10-12 градусов. И при уклоне 15 градусов оползни возникаю только при благоприятных геологических и гидрогеологических условиях.

Оползни могут быть вызваны действием разных факторов. Земная поверхность состоит главным образом из склонов. Некоторые из них устойчивы, другие в силу различных условий становятся неустойчивыми. Это происходит тогда, когда изменяется угол наклона откоса склона или если склон оказывается отягощён рыхлым материалом. Тем самым сила тяжести оказывается больше силы связности грунта. Склон становится нестабильным и при сотрясениях. Поэтому каждое землетрясение в условиях горного рельефа сопровождается смещениями по склону. Образованию оползней особенно благоприятствует такое залегание пород, при котором падение кровли водоупорных пород совпадает с направлением уклона поверхности. Водоупорный горизонт при этом служит поверхностью скольжения, по которой более или менее значительный блок породы соскальзывает вниз по склону. Неустойчивости склона способствует и повышение обводнённости грунтов, рыхлых отложений или горных пород. Вода заполняет поры и нарушает сцепление между частицами грунта. Межпластовые воды могут действовать подобно смазке и облегчать скольжение.

Перечень мероприятий по укреплению горных склонов включает в себя использование специальных конструкций, предотвращающих процессы, связанные с изменением напряженного состояния склонов (выветривание, эрозия, изменение уровня подземных вод). На таких участках целесообразно проводить террасирование поверхности. Откосы таких террас необходимо стабилизировать решетчатыми конструкциями из сборных элементов. Одними из таких конструкций являются сетки двойного кручения, которые очень часто применяют для защиты крутых склонов от небольших камнепадов, снежных лавин, селевых потоков и т.д. Сетки двойного кручения изготавливают из проволоки, термически обработанной оцинкованной и оцинкованной с полимерным покрытием, благодаря свойствам которой данный вид защиты работает надежно. Для защиты склонов от крупных камнепадов применяют сетки кольчужные, которые образованы 6 взаимосоедененными кольцами.

35.Характеристика аллювиальных отложений

Аллювиальные отложения делятся на две большие группы — русловые формы и морфологические элементы межруслового пространства.

-Морфологические формы в руслах

+Аллювий русловых островов и отмелей (баров)

 *Продольные русловые бары

 *Прикрепленные к берегу бары

 *Поперечные бары

 *Песчаные отмели

 *Русловые дюны

+Меандры

+Аллювиальные конусы выноса

-Морфологические формы межруслового пространства

+Прирусловые валы

+Поймы

+Террасы

Древние аллювиальные отложения

Принадлежность отложений к континентальным аллювиальным обычно диагностируется по характерному набору признаков:

-отсутствие морской фауны

-наличие красноцветных пород

-наличие типичных русловых форм

-однонаправленность палеотечений, особенно в -крупнозернистых пластах песчаников и конгломератов

-признаки субаэральной экспозиции — палеогрунты и -трещины усыхания (десквамация), особенно в глинистых отложениях

Из аллювиальных отложений известны и надежно идентифицированы отложения мезозойского возраста, и только отложения нижнего течения равнинных рек датируются возрастом начиная со среднего палеозоя. По мнению Ю. П. Казанского, закономерности распространения состава растворенного и твердого стока в речной воде для современных рек в целом сохранялись в течение кайнозоя, мезозоя, перми, карбона, и позднего девона.

В гидрогеологии (поиске и разведке подземных вод) аллювиальным отложениям уделяют особое внимание, поскольку в пределах древних террас и в долинах рек крупнозернистый аллювий (от гальки до песка) всегда водонасыщен и является хорошим коллектором питьевых подземных вод.

36. Сейсмичность. Определения и общие понятия. Частота землетрясений на планете.

Сейсмичность — статистическое распределение интенсивности землетрясения на выделенной территории в зависимости от его повторяемости и наличия возможных очагов; она устанавливается ведомственными картами сейсмического районирования, а также сейсмического микрорайонирования площадок строительства.

Сейсмовоздействие — колебательное принудительное движение условной платформы (основания), сообщающей закрепленному на ней объекту переносное (во внешней неподвижной системе отсчета) ускорение, заданное акселерограммами в общем случае в трех ортогональных направлениях движения.

Сейсмическая нагрузка (сейсмонагрузка)  — динамическая нагрузка объекта, возникающая при сейсмовоздействии; представляется инерционными силами и моментами, вызываемыми переносными и относительными ускорениями объекта при колебаниях.

Землетрясение – это сейсмические явления, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии, передающиеся на большие расстояния в виде резких колебаний, приводящих к разрушению зданий, сооружений, пожарам и человеческим жертвам.

Причины землетрясений бывают разные: тектонические, вулканические, представляющие наибольшую опасность, а также обвальные, наведенные и др.

СЕЙСМОЛОГИЯ (от греч. seismos - колебание, землетрясение и logos - слово, учение) - раздел геофизики, изучающий землетрясения, их причины, природу и последствия. Основными носителями сейсмологической информации являются сейсмические волны, интерпретация сейсмограмм которых наряду с изучением проявлений сейсмичности позволяет исследовать глубинное строение, физические свойства и динамику недр Земли и других планет. Широкое прикладное развитие сейсмология получила в методах сейсморазведки полезных ископаемых, в сейсмостойком строительстве, в оборонных целях при регистрации взрывов, в том числе ядерных, а также в медицине и в других областях знаний, имеющих отношение к колебательным и ударным воздействиям. Как самостоятельная наука сейсмология начала развиваться в начале 19 века.

За год на Земле происходит примерно:

1 землетрясение с магнитудой 8,0 и выше;

10 — с магнитудой 7,0—7,9;

100 — с магнитудой 6,0—6,9;

1000 — с магнитудой 5,0—5,9.

Сильнейшее зарегистрированное землетрясение произошло в Чили в 1960 году — по более поздним оценкам, магнитуда Канамори составляла 9,5.

37.Сейсмическое районирование планеты, территории Дальневосточного региона. Евроазиатский и Тихоокеанский тектонические пояса. Сейсмичность Юга Дальнего Востока.

СЕЙСМИЧЕСКОЕ РАЙОНИРОВАНИЕ - картирование потенциальной сейсмической опасности в баллах макросейсмической шкалы или в других параметрах (ускорение, скорости колебаний грунта и др.), которые необходимо учитывать при строительстве в сейсмических районах. Согласно российским стандартам, сейсмическое районирование подразделяется на общее сейсмическое районирование (ОСР), детальное сейсмическое районирование (ДСР) и сейсмическое микрорайонирование (СМР). Различие между перечисленными видами сейсмического районирования заключается в объектах изучения, содержании задач и методиках их решения, что определяет масштабы картирования.

Для Дальнего Востока тектонический фактор является определяющим в развитии многообразия типов и форм, осадконакопления, магматизма, метаморфизма, создания складчатых структур, то есть важнейших элементов инженерно-геологической и сейсмологической обстановки. Однако нельзя не учитывать фактор интенсивного освоения Дальневосточных районов, во многом влияющий, на изменение природных условий региона и способствующий развитию подтопления и деградации вечной мерзлоты. В связи с этим к главным особенностям Дальневосточного региона можно отнести:

-большую тектоническую подвижность в мезокайнозое;

-развитие по восточной периферии Тихоокеанского подвижного пояса современной геосинклинали и зоны молодой кайнозойской складчатости с активным проявлением молодого вулканизма;

-развитие на северо-востоке региона многолетнемерзлых грунтов.

Тихоокеанский пояс, обрамляющий впадину Тихого океана и отделяющий её от древних платформ (кратонов): Гиперборейской на севере, Сибирской, Китайско-Корейской, Южно-Китайской, Австралийской на западе, Антарктической на юге и Северо- и Южно-Американской на востоке.  Этот пояс нередко делится на два — Западно- и Восточно-Тихоокеанский; последний называется ещё Кордильерско-Андский, а австралийскую часть называют Восточно-Австралийскую, а антарктической части называют Западно-Антарктический.

 Центрально-Евроазиатский пояс, простирающийся от Баренцева и Карского до Охотского и Японского морей и отделяющий Восточно-Европейскую и Сибирскую древние платформы от Таримской и Китайско-Корейской. Имеет дугообразную форму с выпуклостью к юго-западу. Северная часть пояса простирается субмеридионально и именуется Урало-Сибирским поясом, южная простирается субширотно и называется Центрально-Азиатским поясом. На севере сочленяется с Северо-Атлантическим и Арктическим поясами, на востоке — с Западно-Тихоокеанским. Урало-Монгольский пояс также называют Центрально-Евроазиатским, или Урало-Охотским.

Юг Дальнего Востока России и прилегающие территории. рассматриваемая территория весьма разнообразна. Здесь наряду с практически асейсмичными районами отмечаются территории, где происходили сильные и даже катастрофические землетрясения. Причем их очаги приурочиваются как к зонам молодой - кайнозойской (Сахалин) складчатости, так и к областям древней - дорифейской (Сибирская и Сино-Корейская платформы) складчатости. При этом высокая сейсмичность - далеко не всегда результат контрастной неотектоники. В новейшем тектоническом плане высокая сейсмичность сосредоточена, как правило, в зонах активных дифференцированных движений, хотя есть примеры когда сильные подземные толчки отмечались и в районах с низкими скоростями и градиентами скоростей новейших тектонических движений (восточное замыкание Байкальской рифтовой зоны, Чульманская впадина и др.)

38. Классификация  землетрясений. Причины их возникновение и виды сейсмических волн.

Землетрясения – это подземные удары (толчки) и колебания поверхности Земли, вызванные процессами высвобождения энергии внутри нее. По разрушительным последствиям землетрясения не имеют себе равных среди стихийных бедствий.

Землетрясения бывают:

1. Тектонические землетрясения:

Вся поверхность земного шара делится на несколько огромных частей земной коры, которые называются тектоническими плитами.

Это североамериканская, евроазиатская, африканская, южноамериканская, тихоокеанская и атлантическая плиты. Тектонические плиты находятся в постоянном движении, которое составляет несколько сантиметров в год. Они могут раздвигаться, сдвигаться и скользить одна относительно другой.

Согласно теории, землетрясения являются результатом столкновения этих плит и сопровождаются изменениями поверхности земли в виде складок, трещин, и т.п., которые могут простираться на большие расстояния.

Районы, расположенные вблизи границ тектонических плит, в наибольшей степени подвержены землетрясениям. Это, прежде всего Калифорния, Япония , Греция, Турция. К счастью для человечества, основная часть линий раскола земной коры проходит по морям и океанам. Поэтому 90% землетрясений на Земле проходит незаметно для человека.

Иногда случаются землетрясения во внутренних частя плит – так называемые внутриплитовые землетрясения.

2. Вулканические землетрясения - в местах, где раздвигаются тектонические плиты.

3. Обвальные землетрясения - землетрясения возникающие при развитии крупных оползней, обрушение кровли шахт или подземных пустот с образованием упругих волн.

4. Землетрясения, вызванные инженерной деятельностью человека - (заполнение глубоких, более 10 м водохранилищ, закачка воды в скважины, образовании подземных полостей вследствие добычи полезных ископаемых, горные работы и взрывы большой мощности).

По причине возникновения землетрясения разделяют на вулканические, метеоритные и тектонические, которые объясняет внутренне развитие планеты.

Падение на поверхность Земли крупных небесных тел может спровоцировать метеоритное землетрясение. Человечество не помнит подобных катастроф, но геологические исследования говорят, что такое случалось в истории Земли.

И ранее, и сегодня достаточно часто происходят землетрясения, связанные с извержениями вулканов. Их интенсивность может быть очень большой (до 8 – 10 баллов). Несмотря на то, что эти землетрясения чаще всего бывают очень разрушительными, они не распространяются далеко в разные стороны. Это связано с тем, что их эпицентр, или сейсмический очаг, обычно находится на небольшой глубине.

Самыми распространенными являются тектонические землетрясения. И именно они лидируют по своей мощности и разрушительной силе. Они происходят из-за того, что в недрах Земли на горные породы постоянно воздействуют глубинные тектонические силы, деформируя их. Слои пород начинают сминаться, а когда давление доходит до критической точки, рвутся, создавая разломы. Вдоль разлома проходит скопившаяся в недрах энергия, которая передается упругими волнами через толщу пород, достигая земной поверхности и приводя к разрушениям.

Сейсмические волны — волны энергии, которые путешествуют по земле или другим упругим телам в результате процесса, производящего низкочастотную акустическую энергию.  

Есть два главных типа: объёмные волны и поверхностные волны. Кроме описанных ниже есть и другие, менее значимые типы волн, которые вряд ли можно встретить на Земле, но они имеют важное значение в астросейсмологии

Объёмные волны

Они проходят через недра Земли. Путь волн преломляется различной плотностью и жёсткостью подземных пород.

P-волны

P-волны (первичные волны) — продольные, или компрессионные волны. Обычно их скорость в два раза быстрее S-волн, проходить они могут через любые материалы. В воздухе они принимают форму звуковых волн, и, соответственно, их скорость становится равной скорости звука. Стандартная скорость P-волн — 330 м/с в воздухе, 1 450 м/с в воде и 5 000 м/с в граните.

S-волны

S-волны (вторичные волны) — поперечные волны. Они показывают, что земля смещается перпендикулярно к направлению распространения. В случае горизонтально поляризованных S-волн земля движется то в одну сторону, то в другую попеременно. Волны этого типа могут действовать только в твёрдых телах.

Поверхностные волны

Поверхностные волны несколько похожи на волны воды, но в отличие от них они путешествуют по земной поверхности. Их обычная скорость значительно ниже скорости волн тела. Из-за своей низкой частоты, времени действия и большой амплитуды они являются самыми разрушительными изо всех типов сейсмических волн. Они бывают двух типов: волны Рэлея и волны Лява.

P- и S-волны в мантии и ядре

Когда происходит землетрясение, сейсмографы вблизи эпицентра записывают S- и P-волны. Но на больших расстояниях обнаружить высокие частоты первой S-волны невозможно. Поскольку поперечные волны не могут проходить через жидкости, на основании этого явления Ричард Диксон Олдхэм выдвинул предположение, что Земля имеет жидкое внешнее ядро. По этому виду исследования в дальнейшем было выдвинуто предположение, что у Луны твёрдое ядро, но недавние геодезические исследования показывают, что оно ещё расплавлено.

39. Продольные, поперечные и поверхностные сейсмические волны. Аналитический вид.

см.38

40. Оценка силы землетрясений и их характеристика. Магнитуда, сейсмическое ускорение, силы действующие на сооружение при землетрясении. Шкала Рихтера.

Магниту́да землетрясе́ния — величина, характеризующая энергию, выделившуюся при землетрясении в виде сейсмических волн. Первоначальная шкала магнитуды была предложена американским сейсмологом Чарльзом Рихтером в 1935 году, поэтому в обиходе значение магнитуды называют шкалой Рихтера.

сейсмоускорение (ускорение при сейсмических колебаниях);

Для оценки и сравнения землетрясений используются шкала магнитуд и шкала интенсивности.

Шкала магнитуд

Шкала магнитуд различает землетрясения по величине магнитуды, которая является относительной энергетической характеристикой землетрясения. Существует несколько магнитуд и соответственно магнитудных шкал: локальная магнитуда (ML); магнитуда, определяемая по поверхностным волнам (Ms); магнитуда, определяемая по объемным волнам (mb); моментная магнитуда (Mw).

Наиболее популярной шкалой для оценки энергии землетрясений является локальная шкала магнитуд Рихтера. По этой шкале возрастанию магнитуды на единицу соответствует 32-кратное увеличение освобождённой сейсмической энергии. Землетрясение с магнитудой 2 едва ощутимо, тогда как магнитуда 7 отвечает нижней границе разрушительных землетрясений, охватывающих большие территории. Интенсивность землетрясений (не может быть оценена магнитудой) оценивается по тем повреждениям, которые они причиняют в населённых районах.

Шкалы интенсивности

Интенсивность является качественной характеристикой землетрясения и указывает на характер и масштаб воздействия землетрясения на поверхность земли, на людей, животных, а также на естественные и искусственные сооружения в районе землетрясения. В мире используется несколько шкал интенсивности: в Европе — европейская макросейсмическая шкала (EMS), в Японии — шкала Японского метеорологического агентства (Shindo), в США и России — модифицированная шкала Меркалли (MM):

балл (незаметное) — колебания почвы, отмечаемые прибором;

балла (очень слабое) — землетрясение ощущается в отдельных случаях людьми, находящимися в спокойном состоянии;

балла (слабое) — колебание отмечается немногими людьми;

балла (умеренное) — землетрясение отмечается многими людьми; возможно колебание окон и дверей;

баллов (довольно сильное) — качание висячих предметов, скрип полов, дребезжание стекол, осыпание побелки;

баллов (сильное) — легкое повреждение зданий: тонкие трещины в штукатурке, трещины в печах и т. п.;

баллов (очень сильное) — значительное повреждение зданий; трещины в штукатурке и отламывание отдельных кусков, тонкие трещины в стенах, повреждение дымовых труб; трещины в сырых грунтах;

баллов (разрушительное) — разрушения в зданиях: большие трещины в стенах, падение карнизов, дымовых труб. Оползни и трещины шириной до нескольких сантиметров на склонах гор;

баллов (опустошительное) — обвалы в некоторых зданиях, обрушение стен, перегородок, кровли. Обвалы, осыпи и оползни в горах. Скорость продвижения трещин может достигать 2 км/с;

баллов (уничтожающее) — обвалы во многих зданиях; в остальных — серьёзные повреждения. Трещины в грунте до 1 м шириной, обвалы, оползни. За счет завалов речных долин возникают озёра;

баллов (катастрофа) — многочисленные трещины на поверхности Земли, большие обвалы в горах. Общее разрушение зданий;

баллов (сильная катастрофа) — изменение рельефа в больших размерах. Огромные обвалы и оползни. Общее разрушение зданий и сооружений.

41.  Сейсмическая шкала объединенного института физики Земли РАН. Ее содержание и область применения.

Сейсмическая шкала, шкала для оценки интенсивности колебаний на поверхности Земли при землетрясениях. Существует большое количество С. ш., в которых интенсивность колебания оценивается по степени повреждений зданий, масштабу и формам проявления остаточных деформаций в грунте и другим показателям внешнего эффекта землетрясений.

В СССР используется 12-балльная шкала (ГОСТ 6249-52), в которой для определения балла землетрясения, в дополнение к перечисленным показателям, учитываются показания маятника сейсмометра СБМ; используется также шкала MSK-64 (см. в ст. Землетрясения), уточняющая способы определения интенсивности. С 1973 ведутся работы по составлению новой С. ш., в которой интенсивность землетрясений оценивается не только по результатам визуальных наблюдений, но и по показаниям приборов (сейсмографов, акселерографов и др.), фиксирующих основные элементы колебательного процесса (смещения, скорость, ускорение), которые приобретают частицы грунта в момент землетрясения. Так, баллу 9 отвечает скорость  ?колебаний частиц грунта порядка 24,1-48,0 мм/сек, ускорение  ?- 241-480 см/сек2 (для более низких баллов значения  ?и  ?соответственно ниже). Наряду с оценкой интенсивности колебаний на поверхности Земли в баллах применяется классификация землетрясений по магнитуде - условной величине, пропорциональной логарифму энергии, излучаемой очагом землетрясения (так, интенсивность Ашхабадского землетрясения 1948 оценивается в 10 баллов, а его магнитуда была равна 7,0; для Ташкентского землетрясения 1966 интенсивность равна 8 баллам, а магнитуда 5,3). Связь между магнитудой (М), интенсивностью (Jo) и глубиной очага (h) землетрясения выражается соотношением вида: Jo = вМ - nlgh + С, где коэффициенты в, n и С определяются эмпирически и несколько меняются от района к району.

В некоторых странах используются др. С. ш., например в Японии - 7-балльная. С. ш. применяются для изучения внешнего эффекта землетрясений, составления карт изосейст, при сейсмическом районировании и микрорайонировании территории.

42. Карта общего сейсмического районирования РФ (ОСР-97) и районирование Дальнего Востока. Принципы заложенные в карту ОСР-97. Область применения

Дальний Восток.

Курило-Камчатская зона является классическим примером субдукции Тихоокеанской литосферной плиты под материк. Она протягивается вдоль восточного побережья Камчатки, Курильских островов и о-ва Хоккайдо. Здесь возникают самые крупные в Северной Евразии землетрясения с М более 8.0 и сейсмическим эффектом I0=10 баллов и выше. Структура зоны четко прослеживается по расположению очагов в плане и на глубине. Протяженность ее вдоль дуги около 2500 км, по глубине - свыше 650 км, толщина - около 70 км, угол наклона к горизонту - до 50о. Сейсмический эффект на земной поверхности от глубоких очагов относительно невысок. Определенную сейсмическую опасность представляют землетрясения, связанные с активностью Камчатских вулканов (1827 г., при извержении Авачинского вулкана интенсивность сотрясений достигала  6-7 баллов). Самые сильные (М=8.0-8.5, I0=10-11 баллов) землетрясения возникают на глубине до 80 км в сравнительно узкой полосе между океаническим желобом, Камчаткой и Курильскими островами (1737, 1780, 1792, 1841, 1918, 1923, 1952, 1958, 1963, 1969, 1994, 1997 гг. и др.). Большинство из них сопровождалось мощными цунами высотой 10-15 м и выше. Наиболее изучены Шикотанское (1994 г., М=8.0, I0=9-10 баллов) и Кроноцкое (1997 г., М=7.9, I0= 9-10 баллов) землетрясения, возникшие у Южных Курил и восточного побережья Камчатки. Шикотанское землетрясение сопровождалось волной цунами высотой до 10 м, сильными афтершоками и большими разрушениями на о-вах Шикотан, Итуруп и Кунашир. Погибли 12 человек, причинен огромный материальный ущерб.

Сахалин представляет собой северное продолжение Сахалино-Японской островной дуги и трассирует границу Охотоморской и Евразиатской плит. До катастрофического Нефтегорского землетрясения (1995 г., М=7.5, I0=9-10 баллов) сейсмичность острова представлялась умеренной и до создания в 1991-1997 гг. нового комплекта карт общего сейсмического районирования территории России (ОСР-97) здесь ожидались лишь землетрясения интенсивностью до 6-7 баллов. Нефтегорское землетрясение было самым разрушительным из известных за все время на территории России. Погибло более 2000 чел. В результате полностью ликвидирован рабочий поселок Нефтегорск. Можно полагать, что техногенные факторы (бесконтрольная откачка нефтепродуктов) сыграли роль спускового механизма для накопившихся к этому моменту упругих геодинамических напряжений в регионе. Монеронское землетрясение (1971 г., М=7.5), произошедшее на шельфе в 40 км юго-западнее о-ва Сахалин, на побережье ощущалось интенсивностью до 7 баллов. Крупным сейсмическим событием было Углегорское землетрясение (2000 г., М=7.1, I0 около 9 баллов). Возникнув в южной части острова, вдалеке от населенных пунктов, оно практически не принесло ущерба, но подтвердило повышенную сейсмическую опасность Сахалина.

Приамурье и Приморье характеризуются умеренной сейсмичностью. Из известных здесь землетрясений пока только одно на севере Амурской области достигло магнитуды М=7.0 (1967 г. I0=9 баллов). В будущем магнитуды потенциальных землетрясений на юге Хабаровского края так же могут оказаться не менее М=7.0, а на севере Амурской области не исключены землетрясения с М=7.5 и выше. Наряду с внутрикоровыми, в Приморье ощущаются глубокофокусные землетрясения юго-западной части Курило-Камчатской зоны субдукции. Землетрясения на шельфе нередко сопровождаются цунами.

Чукотка и Корякское нагорье еще недостаточно изучены в сейсмическом отношении из-за отсутствия здесь необходимого числа сейсмических станций. В 1928 г. у восточного побережья Чукотки возник рой сильных землетрясений с магнитудами М=6.9, 6.3, 6.4 и 6.2. Там же в 1996 г. произошло землетрясение с М=6.2. Самым сильным из ранее известных в Корякском нагорье было Хаилинское землетрясение 1991 г. (М=7.0, I0=8-9 баллов). Еще более значительное (М=7.8, I0=9-10 баллов) землетрясение случилось в Корякском нагорье 21 апреля 2006 г. Больше всего пострадали поселки Тиличики и Корф, откуда было эвакуировано свыше полутысячи жителей аварийных домов. Благодаря редкой заселенности, погибших не было. Подземные толчки ощущались в Олюторском и Карагинском районах Корякии. В результате стихии пострадали несколько деревень.

Комплект карт ОСР-97 (А, В, С) позволяет оценивать на трех уровнях степень сейсмической опасности и предусматривает осуществление антисейсмических мероприятий при строительстве объектов трех категорий, учитывающих ответственность сооружений: карта А - массовое строительство; карты В и С - объекты повышенной ответственности и особо ответственные объекты.

43.  Принципы сейсмического микрорайонирования и особенности строительства в сейсмических районах.

СМР заключается в приращении или уменьшении сейсмической опасности строительной площадки в зависимости от грунтовых условий, рельефа и обводненности.

Для строительных целей в России используются карты сейсмического районирования ОСР-97(А, В, С)

Согласно новой редакции Строительных норм и правил (СНиП II-7-81*) "Строительство в сейсмических районах", карта ОСР-97-А рекомендована для использования при массовом промышленном и гражданском строительстве. Карты ОСР-97-В и ОСР-97-С предназначены для проектирования и строительства объектов повышенной ответственности и особо ответственных сооружений (здания и сооружения, эксплуатация которых необходима при землетрясении или при ликвидации его последствий - системы энерго- и водоснабжения, пожарные депо, сооружения связи; здания с одновременным пребыванием в них большого числа людей - вокзалы, аэропорты, театры, цирки, концертные залы, крытые рынки, спортивные сооружения; больницы, школы, дошкольные учреждения; здания высотой более 16 этажей; другие здания и сооружения, отказы которых могут привести к тяжелым экономическим, социальным, экологическим последствиям и т.п.).  

44. Состав инженерных изысканий. Состав инженерно-геологических изысканий.

В состав инженерных изысканий для строительства входят следующие основные их виды: инженерно-геодезические, инженерно-геологические, инженерно-гидрометеорологические, инженерно-экологические изыскания, изыскания грунтовых строительных материалов и источников водоснабжения на базе подземных вод.

К инженерным изысканиям для строительства также относятся: геотехнический контроль; обследование грунтов оснований фундаментов зданий и сооружений; оценка опасности и риска от природных и техноприродных процессов; обоснование мероприятий по инженерной защите территорий; локальный мониторинг компонентов окружающей среды;

геодезические, геологические, гидрогеологические, гидрологические, кадастровые и другие сопутствующие работы и исследования (наблюдения) в процессе строительства, эксплуатации и ликвидации объектов; научные исследования в процессе инженерных изысканий для строительства предприятий, зданий и сооружений; авторский надзор за использованием изыскательской продукции в процессе строительства в составе комиссии (рабочей группы); инжиниринговые услуги по организации и проведению инженерных изысканий.

В состав инженерно-геологических изысканий входит:

Сбор и обработка материалов изысканий прошлых лет; маршрутные наблюдения( рекогносцировочное обследование); проходка горных выработок; геофизическое исследование; полевые исследования грунтов; стационарные наблюдения; лабораторные исследования грунтов и подземных вод; обследование грунтов существующих зданий и сооружений;  камеральная обработка материалов; составление прогноза измерений инженерно- геологических условий; оценка опасности и риска от геологических и инженерно-геологических процессов; составление технического отчета.

45. Инженерно-геологическая съемка. Определение, состав работ, описание элементов геологической среды и точки обязательного полевого описания, их шаг. Конечный результат.

Инженерно-геологическая съемка - основной вид геологического  исследования территории на начальной стадии инженерных  изысканий. Основная  ее задача состоит в изучении инженерно-геологических условий строительства различных сооружений,  производства строительных работ и изображении их на топографической основе.

Результатом инженерно-геологической  съемки  является составление инженерно-геологической карты, описания, характеристики и оценки инженерно-геологических условий заснятой территории.  Материалы съемки необходимы также для правильного выполнения других видов геологических работ:  разведочных,  опытных, гидрогеологических, позволяющих с достаточной полнотой  осветить  инженерно-геологические  условия  на стадии изысканий.

Инженерно—геологическая съемка включает:

наземные и аэровизуальные наблюдения;

дешифрирование АКФМ;

горные и буровые работы;

инженерно—геологическое опробование;

геофизические работы;

некоторые специальные методы (зондирование, пенетрационно—каротажный и др.).

Состав работ, входящих в инженерно—геологическую съемку, может несколько изменяться в зависимости от природных, в том числе и геологических, условий и масштаба съемки.

Съемка  сопровождается  бурением скважин и проходкой неглубоких горных выработок (закопушек,  расчисток,  канав, шурфов). Полученные  таким образом искусственные обнажения входят в общее количество точек наблюдений при съемке. Характеристика и оценка  горных пород  обязательно  должны производиться в условиях их естественного залегания,  сложения,  влажности и  обводненности.

Точки наблюдений вдоль каждого маршрута должны располагаться на карте  в среднем, на расстоянии 0,5-1 см одна от другой независимо от масштаба карты.

46.  Содержание инженерно-геологической карты. Масштабы карт. Признаки кондиционности.

Группа методов геологического картирования включает геологические методы, используемые при геологической съемке и поисках полезных ископаемых различных масштабов. Сама по себе геологическая съемка имеет самостоятельное значение как один из главных методов поисков. Только путем анализа геологических карт выявляются геологические закономерности, контролирующие размещение полезных ископаемых в данном районе.

Геологическая карта служит также основой для постановки других методов поисков, т. к. знание геологического строения изучаемой территории, наряду с другими факторами, позволяет правильно выбрать методы поисков, определить их масштаб, направление поисковых линий, густоту точек наблюдения и главное — правильно интерпретировать фактические материалы, полученные в результате работ. Наконец, сведения о геологическом строении исследуемой площади в комплексе с другими материалами, собранными при поисках, позволяют произвести обоснованную геологическую оценку перспектив выявленного объекта и дать прогноз его возможного промышленного значения.

Масштаб геологических съемок, проводимых с целью поисков, зависит от сложности геологического строения изучаемой площади и от поставленных задач. Геологические карты масштабов 1:100 000 —1:1 000 000 называются региональными. По содержанию эти карты комплексные. На них должны быть отражены все необходимые данные, имеющие отношение к геологическим предпосылкам поисков и поисковым признакам. Карты масштабов 1:50 000 — 1:25 000 также должны быть комплексными, но специализированными на определенный вид полезного ископаемого. Для изучаемого района они служат основным документом, обосновывающим постановку поисковых работ.

На основе геологической карты масштабов 1:50 000— 1:25 000 объектами оценки являются потенциальные рудные поля. При поисках этого масштаба могут быть выявлены лишь весьма крупные месторождения относительно простого геологического строения: месторождения углей, минеральных солей, осадочные месторождения железа и марганца и некоторых других полезных ископаемых. При более детальных поисковых и поисково-оценочных работах, которые проводятся в контурах обнаруженных рудных полей, производятся специализированные крупномасштабные геологические съемки 1:10 000 — 1:5000 и крупнее.

Специализация геологических съемок при поисковых работах заключается в том, что главное внимание уделяется выявлению ведущих поисковых предпосылок прогнозируемого полезного ископаемого, а их изучение проводится с предельно возможной детальностью. Специализированное геологическое картирование как важнейший элемент входит во все рациональные системы поисковых работ.

Для выявления ведущих поисковых предпосылок изучаемых рудных полей и месторождений составляется несколько специализированных карт, позволяющих выявить или детализировать рудоконтролирующие элементы структур и сконцентрировать на них поисковые работы — геолого-структурные, литолого-фациальные, палеовулканические и др.

Кондиционность геологической карты заключается в соответствии ее содержания масштабу. Чем крупнее масштаб карты, тем подробнее должна быть легенда, более дробными расчленение комплексов пород, выделение структурных элементов и т. д. Кроме того, все контуры, границы, элементы залегания пород должны быть установлены более точно и обоснованно. Следовательно, чем крупнее масштаб геологической карты и сложнее геологическое строение района, тем большее количество наблюдений требуется на единицу исследуемой площади.

Большое значение при проведении геологической съемки (в том числе и крупномасштабной) и поисков имеет использование материалов космо- и аэросъемки (материалов дистанционного зондирования), получаемых при использовании съемочных систем, работающих в оптическом и микроволновом диапазоне, радиодиапазоне электромагнитного излучения. В настоящее время при геологических исследованиях в основном используются данные аэросъемок и съемок с автоматических спутников околоземных орбит. Аэросъемки проводятся в масштабах 1:2000 — 1:5000 (разрешение на местности — десятки сантиметров), 1:16 000 — 1:50 000 (разрешение на местности — первые метры), 1:50 000 и мельче (разрешение на местности — многие метры). Космические съемки подразделяются на съемки высокого разрешения на местности (лучше 10 м), среднего (10 — 100 м), низкого (хуже 100 м).

Материалы дистанционного зондирования позволяют выявлять практически весь комплекс геолого-тектонических элементов, являющихся объектами изучения при геологической съемке: площадных и стратифицированных и нестратифицированных объектов и прослеживание их границ, отдельных пластов и маркирующих горизонтов, даек, разрывных нарушений, выделение тектонических блоков складчатых и кольцевых структур, размещения и особенности магматических пород, а также решать ряд поисковых задач: выделение рудоконтролирующих структур, установление ареалов гидротермально-метасоматических измененных пород, размещение зон окисления и др.

В целом использование материалов дистанционного зондирования дает более полную и объективную картину пространственных особенностей изучаемых территорий и закономерностей размещения месторождений полезных ископаемых.

ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ КАРТЫ— вид геологических карт, на которых показаны все важнейшие геологические факторы, учитываемые при планировании, проектировании, строительстве, эксплуатации сооружений и проведении других инженерных мероприятий. На инженерно-геологических картах отображены возраст, генезис, условия залегания, состав, строение и физико-механические свойства горных пород и комплексов и их распространение, геоморфологическая характеристика территории, гидрогеологические условия, геодинамические явления. Карты сопровождаются разрезами, таблицами, текстовыми пояснениями. 

По назначению различают общие и специальные инженерно-геологические карты. Общие карты являются многоцелевыми и содержат инженерно-геологическую информацию, необходимую для обоснования различных видов инженерно-хозяйственного освоения территории. На специальных инженерно-геологических картах показываются какие-либо отдельные инженерно-геологические характеристики (карта оползней).

В зависимости от масштаба различают: обзорные карты (1:1 000 000 и мельче), составляемые для общей инженерно-геологической характеристики крупных природно-экономических регионов.

 мелкомасштабные (1:500 000 — 1:100 000), используемые для планирования размещения сооружений, предпроектных проработок, при проектировании детальных инженерно-геологических работ, региональных прогнозах;

среднемасштабные (1:50 000 — 1:25 000), необходимые для оптимального выбора строительных площадок, принятия принципиальных проектных решений, составления локальных прогнозов и др.

крупномасштабные (1:10 000 и крупнее), предназначенные для инженерно-геологического обоснования условий строительства и эксплуатации конкретных сооружений (шахт, карьеров, гидроузлов и т.д.).

47.  Инженерно-геологические разведочные работы. Определение, состав работ. Содержание работ по бурению скважин, проходке горных выработок, геофизическим исследованиям   Конечный результат.Разведочными работами называется комплекс видов геологических работ,  выполняемых с помощью определенных технических средств (геофизических,  бурения  скважин,проходки  горных выработок) для изучения инженерно-геологических условий того или иного участка до  необходимой  глубины.  Разведочные  работы позволяют с той или иной степенью детальности в любой необходимой точке площадки устанавливать  геологический разрез, состав горных пород, их строение, физическое состояние и обводненность.

Разведочные работы сопровождаются специальными наблюдениями,  отбором образцов и проб горных пород.

 Бурение скважин при инженерных изысканиях

1) изучение  всего  геологического разреза независимо от мощности слоев,  прослойков,  линз горных пород,  пересекаемых скважиной,  то есть полноту разреза;

2) точное установление положения геологических границ, пересекаемых скважиной,    контактов,  поверхностей наслоения, сланцеватости, границ зон, положения слабых прослойков, трещин, пустот, мерзлых пород, водоносных горизонтов и др.;

3) сохранение,  минимальную нарушенность естественного  сложения, влажности  и вообще физического состояния горных пород,  извлекаемых из скважин в виде керна и образцов, для полной их характеристики.

Наиболее распространенные  способы  бурения  - колонковый,  ударно-канатный кольцевым  забоем,  вибрационный,  медленновращательный, шнековый и ручной ударно-вращательный. Первые два наиболее эффективны при инженерных изысканиях. 

Проходка горных выработок

Горные выработки позволяют получить наиболее точные и достоверные геологические данные. К ним относятся штольни, шахты, шурфы, канавы, закопушки,  расчистки. Объем горных работ обычно составляет не более 10%  от  общего объема изысканий,  так как это наиболее трудоемкий и дорогой вид разведочных работ.

Шольни и шахты (чрезвычайно трудоемкий и дорогой вид разведочных работ), применяются при изысканиях под уникальные и крупные промышленные объекты.  Программой практики проходка этих выработок студентами не предусматривается.

Шурф -  вертикальная выработка прямоугольного или квадратного сечения (круглый шурф носит название "дудка") размером 1х1;2х2м2.

По окончании работ шурфы должны быть засыпаны, грунт утрамбован и спланирован,  чтобы исключить попадание грунтовых вод. Если нет возможности шурф засыпать, то он закрывается досками и ограждением.

Канава (трашея) - узкая (0,6 - 0, 8 м) и неглубокая (менее 2,0 м) выработка,  различного  поперечного профиля,  определяемого устойчивостью горных пород.

Закопушка -  это  воронкообразная (диаметр около 20 см) или квадратного сечения (50х50 см) выработка глубиной до  1,0  м.  Закопушки закладывают  для очистки от поверхностных наносов и описания первого от поверхности слоя горных пород.

Расчистки - выработки со ступенчатым дном.  Их применяют при описании пород,  слагающих склоны и откосы при небольшой мощности  рыхлых отложений

ОТБИРАЮТСЯ ПРОБЫ ГОРНЫХ ПОРОД ДЛЯ:

Макроскопическое описание  и определение наименования горных пород,

Определение плотности и влажности горных пород,

РЕЗУЛЬТАТЫ ЗАПИСЫВАЮТСЯ В СПЕЦИАЛЬНЫЙ ЖУРНАЛ.

48.  Бурение скважин – шнековое, ударно-канатное, колонковое. Содержание буровой колонки.

Шнековое бурение применяют для скважин диаметром 110 ...125 мм и глубиной до 30 м в мягких и мерзлых грунтах. Шнековые буровые станки () имеют металлическую раму, состоящую из двух направляющих стоек, установленных на передвижной платформе или на полозьях. По (направляющим стойкам рамы перемещается электродвигатель с редуктором, в шпиндель которого вставлены рабочие буровые штанги. Рабочие штанги длиной 2 м представляют собой трубы, на поверхности которых по винтовой линии наварены стальные полосы — реборды. Извлекают штанги с помощью ручной лебедки. По мере углубления скважины штанги наращивают, соединяя их между собой специальными патронами. Звенья заканчиваются рабочей частью в виде долота или лопастного резца, которые при вращении штанг врезаются в породу. Выбуренная порода с помощью винтового конвейера выдается на поверхность.

Колонковое бурение применяют для проходки скважин диаметром 45... 130 мм и глубиной до 200 м. Колонковые установки     или станки имеют лебедку подъема трубчатых штанг и механизм для их вращения. На конце штанги находится   рабочая часть — колонковый снаряд () с кольцевой коронкой,   армированной :      резцами из твердых сплавов или алмазами (). При вращении бурового снаряда колонка под действием осевого давления внедряется в породу, образуя кольцевую выработку породы вокруг керна, входящего в колонковую трубу. После проходки «а необходимую глубину буровые штанги вместе с колонковым снарядом и керном поднимают лебедкой на поверхность. В процессе бурения в  забой скважины насосом через бурильные трубы подают глинистый раствор (или воду). Смешиваясь с частицами разрушенной породы, глинистый раствор выносит   их   «а   поверхность   по   кольцевому пространству между штангами и стенками скважины.   Глинистый раствор охлаждает бурильный инструмент и    одновременно   предотвращает обрушение стенок скважины.

Роторное бурение чаще всего используют для устройства скважин значительных диаметров (300...400 мм) и большой глубины (150...1200 ад). Роторная бурильная установка состоит из вращателя— ротора, сборной вышки и оборудования для промывки скважины глинистым раствором (). Рабочая (ведущая) труба проходит через вкладыши круглого стола ротора, который предназначен для передачи вращения от двигателя к бурильным трубам, присоединенным к рабочей трубе. Размеры вкладышей ротора соответствуют наружному диаметру рабочей трубы, что позволяет ей одновременно с вращением перемещаться вверх и вниз. Нижний конец бурильной трубы чаще всего имеет шарошечные и лопастные долота (), которые разрабатывают грунт по всей площади забоя скважины. Верхним концом рабочая труба соединена с вертлюгом, к нему присоединен рукав от насоса, подающий в бурильные трубы глинистый раствор. Всю систему рабочих и бурильных труб с вертлюгом подвешивают к крюку. Рабочие и бурильные трубы поднимают и опускают канатом, навитым на барабан лебедки.

Электрическими сверлильными машинами бурят шпуры в мягких и средней твердости породах, а также в мерзлых грунтах. Различают электрические сверлильные машины легкие (с ручной подачей) и тяжелые (колонковые). В ручной электросверлильной машине осевое давление создается за счет мускульной энергии бурильщика. Колонковые электросверлильные машины имеют автоматическую подачу. Буровую штангу сверл закрепляют в патроне шпинделя. К нижнему концу электрической ручной сверлильной машины с помощью замка присоединяют резец из твердого сплава. Буровые штанги подбирают комплектно в соответствии с глубиной шпура. При бурении ручной электрической сверлильной машиной шлам или буровую мелочь удаляют из шпура путем быстрого извлечения сверла, без прекращения его вращения. При работе колонковыми сверлильными машинами шлам удаляют   промывкой.

При ударном способе бурения разработку ведут сплошным забоем на полное сечение скважин глубиной до 250 м (с начальным диаметром 300 и конечным 150 мм). Сплошной забой применяют при бурении скважин для водоснабжения, детальной разведки каменных материалов, иженерно-геологических исследований, при замораживании грунта, устройстве набивных свай и т. п.

Ударный способ бурения подразделяют на ударно-канатный, ударно-штанговый и ударно-вращательный.

При ударно-канатном бурении буровой снаряд массой до 3 т падает с высоты более 1 м в забой скважины, развивая значительную силу удара. Станок ударно-канатного бурения () работает следующим образом. Через блок опорной мачты бурильного станака перекинут канат, проходящий под балансирным роликом и огибающий далее направляющий ролик. Канат закреплен на барабане лебедки. Балансирный ролик получает от кривошипно-шатунной передачи качательное движение, благодаря чему происходят периодические подъемы и падения бурового снаряда, состоящего из ударной штанги, канатного замка и долота. Долото может быть плоским, двутавровым, крестовым и округляющим. Изготовляют их из легированной стали. Во время бурения в скважину заливают воду, образующую с тонкоизмельченной породой шлам, который периодически вычерпывают полым цилиндром (желонкой) с клапаном на нижнем конце. Производительность станков ударно-каиатного бурения до 30 м в смену.

Ударно-штанговое бурение применяют, когда необходимо обеспечить минимальное вертикальное отклонение оси скважины. Буровой снаряд опускают в скважину на бурильных трубчатых штангах, соединенных между собой замками с конической резьбой. Подвешивают колонны бурильных штанг с помощью вертлюгов усиленной конструкции.

Ударно-вращательным бурением устраивают шпуры и скважины в породах различной крепости.

С помощью станков ударно-вращательного бурения () проходят скважины глубиной до 30 м в весьма крепких породах. Главная особенность этого способа состоит в том, что вращение и ударное действие инструмента выполняют двумя независимыми механизмами—вращателем и пневмоударником. Пневмоударник () представляет собой пневматический молоток, в котором движущийся возвратно-поступательный поршень со штоком наносит своим бойком удары по хвостовику коронки. Коронка при бурении может передвигаться вдоль оси пневмоударника на 20 мм. Сжатый воздух поступает к пневмоударнику по буровым штангам. При работе станка вращатель, состоящий из электродвигателя и редуктора, приводит во вращение буровую штангу и пневмоударник, внедряющийся в грунт. Самая оптимальная частота вращения штанги 25 мин

Выходящую из скважины буровую пыль улавливает обеспыливатель.

Перфораторы, применяемые для бурения шпуров, бывают ручные массой до 24 кг (при глубине шпура до 3 м) и колонковые (или станковые) массой до 40 кг. Они обеспечивают бурение шпуров глубиной до 5 м. Воздух (2...4 м3/мин) к перфоратору подводится от компрессора. Рабочий орган перфоратора — буровая головка (). При бурении нетрещиноватых пород мягкой и средней крепости применяют головку с одним долотом, армированную твердыми сплавами. Двухдолотчатыми головками бурят вязкие и трещиноватые породы. Головки крестообразной формы используют для бурения пород средней крепости с незначительной трещиноватостью, а также вязких пород. Крепкие и трещиноватые породы бурят с помощью кресто- и звездообразных головок.

Перфораторные молотки по очистке каналов от пыли и каменной мелочи подразделяют на сухие и мокрые. Перфораторы мокрого типа имеют специальные устройства для промывки кана дой, а в перфораторах сухого типа канал продувают воздухом Более предпочтительным является мокрое бурение, так как применение для промывки канала воды снижает сопротивляемость породы и увеличивает стойкость головки бура из-за ее охлаждения водой и уменьшения трения о стенки канала.

Вибрационным способом бурят шпуры и скважины (диаметром до 125 мм и глубиной до 25 м) в мягких грунтах.

При вибрационном способе бурения грунт под действием вибрирующего снаряда выделяет связную жидкость, а частицы грунта в зоне контакта с вибрирующими наконечниками переходят в подвижное состояние. При этом резко снижается сопротивляемость грунта сдвигу и буровой инструмент внедряется в породу. Методы образования каналов вибрационным бурением идентичны вибропогружению свай и шпунта.

Скорость вибробурения довольно высокая. Например, в суглинистых почвах за несколько секунд можно пробурить шпур глубиной до 1 м. С увеличением глубины выработки вибрация бурового инструмента затухает, скорость проходки уменьшается, а на глубине 20...25 м проходка прекращается.

При всех механических способах (бурения стенки скважин крепят обсадными трубами с внутренним диаметром 50...200 мм. Колонны обсадных труб составляют из звеньев длиной 1,5...4,5 м, которые опускают при бурении, начиная с большего диаметра. По мере углубления скважин переходят на меньшие диаметры. Звенья труб соединяют муфтами, ниппелями или свинчивают между собой (труба в трубу). Внутренний диаметр труб должен быть 5... 10 мм больше диаметра бурового инструмента. Вверху обсадных труб устанавливают патрубок, защищающий нарезку труб от ударов буровым оборудованием, а внизу — коронку (фрезер), облегчающую опускание колонн обсадных труб.

49: Горные выработки – закопушки, расчистки, шурфы, канавы, шахты, штольни. Их оптимальные размеры, области и цели использования.

Горная выработка — искусственная полость, сделанная в недрах земли или на поверхности.

Подземные горные выработки, независимо от наличия непосредственного выхода на поверхность, имеют замкнутый контур поперечного сечения. Выработки, расположенные на поверхности земли имеют незамкнутый контур поперечного сечения (канава, траншея).

В зависимости от назначения, различают горные выработки разведочные и эксплуатационные. Первые используют для поисков и разведки месторождений полезных ископаемых, вторые — для разработки месторождений, то есть для извлечения полезных ископаемых из недр. Эксплуатационные выработки, в свою очередь, в зависимости от назначения разделяются на вскрывающие, подготавливающие и очистные.

Вскрывающие выработки служат для вскрытия шахтного поля.

Подготовительные выработки сооружаются для подготовки шахтного поля к разработке.

В очистных выработках непосредственно ведется добыча полезных ископаемых.

В зависимости от того, по каким породам пройдены выработки, они разделяются на пластовые и полевые. Первые проводятся по пласту полезного ископаемого, вторые по пустым породам.

В зависимости от соотношения между площадью поперечного сечения выработки и ее продольным разрезом, различают выработки протяжённые и объёмные. В зависимости от положения в пространстве, протяжённые горные выработки разделяются на горизонтальные, наклонные и вертикальные.

Шурф (нем. Schurf) — вертикальная (редко наклонная) горная выработка небольшой глубины (до 40 м), проходимая с земной поверхности для разведки полезных ископаемых, вентиляции, водоотлива, транспортирования материалов, спуска и подъёма людей и для других целей. Площадь поперечного сечения шурфа от 0,8—4 кв. м. Форма поперечного сечения подразделяется на круглое либо прямоугольное, редко квадратное.

Кана́ва — открытая горная или геологоразведывательная выработка, имеющая небольшие по сравнению с длиной поперечные размеры.

Канавы широко применяются при разработке россыпей и торфяных месторождений. По назначению канавы подразделяются на руслоотводные (предназначенные для отвода русел небольших рек и ручьёв), нагорные (для перехвата стекающей посклонам воды), разрезные (для сбора и отвода воды на открытых выработках), капитальные (для сбрасывания воды ниже уровня участка горных работ), водоотводные (предотвращающие поступление воды в выработки), водоподводные (обеспечивающие водоснабжение).

Штольня (от нем. Stollen — столб) — горизонтальная или наклонная горная выработка, имеющая выход на земную поверхность и обычно предназначенная для добычи полезных ископаемых или обслуживания горных работ. Является основной вскрывающей выработкой при разработке месторождений в районах с гористым рельефом.

В зависимости от назначения штольни бывают вентиляционными, эксплуатационными, разведочными, водоотливными, очистными и др.

50. Геофизические исследования. Малоглубинная сейсморазведка. Основные принципы метода и применяемая аппаратура.

Геофизические исследования при инженерно – геологических изысканиях железных дорог выполняются на всех стадиях работ. Выбор методов геофизических исследований зависит от решаемых задач и сложности инженерно геологических условий района проектирования. Задачи, методы и объемы геофизических исследований при инженерно – геологических изысканиях приведены в СП 11-105-97. Сейсморазведка – это геофизический метод изучения геологических объектов с помощью упругих волн. Метод основан на том, что скорость распространения упругих волн зависит от типа породы, ее литологического состава, пористости, трещиноватости, газо- и водонасыщенности, напряженного состояния и возраста. Основные методы сейсморазведки: метод отраженных волн, метод преломленных волн, метод общей глубинной точки, метод общей глубинной площадки, вертикальное сейсмическое профилирование. Малоглубинная сейсморазведка (МПВ и МОВ). Малоглубинная сейсморазведка, применяемая при инженерно-геологических изысканиях, позволяет изучать разрез до глубин 40-50 м. Достоинством метода является высокая разрешающая способность и точность определения глубин, что достигается путем применения сложной аппаратуры и программного обеспечения.

 Для регистрации колебаний упругих волн применяют специальные устройства — сейсмоприемники, преобразующие колебания частиц почвы в электрический сигнал. Полученная информация собирается на графиках, называемых сейсмограммами, обрабатывается и получает геологическое толкование. В результате строение земной коры изображается в виде разрезов и карт, на которых определяется место возможного скопления полезных ископаемых.


 

А также другие работы, которые могут Вас заинтересовать

73666. Экономическая деятельность земств Поволжья в середине XIX - начале XX века 24.57 KB
  Нижний уровень включал в себя все многообразие учреждений мелкого кредита. Положения об учреждении мелкого кредита. В середине 1890х годов вопрос об организации мелкого кредита обсуждался в земствах в печати; правительство ставило его в программу своих мероприятий для подъема благосостояния сельского населения. Проекты организации мелкого кредита в это время представляли собой попытки объединить в пределах губерний всякого рода мелкие кредитные учреждения.
73668. Група режимів роботи ВПМ 508 KB
  З причини того, що вантажопідйомні машини повязані з підйомом і переміщенням вантажів, вони вимагають особливої уваги при проектуванні і ретельного контролю за виготовленням і експлуатацією
73669. Гнучкі елементи вантажопідйомних машин 259.5 KB
  Неметалеві канати. Металеві дротяні канати Якщо ці елементи є складовою частиною механізму підйому то вони називаються вантажними якщо вони використовуються для переміщення вантажів то вони називаються тяговими якщо вони використовуються для обвязування вантажу що транспортується то їх називають чалочними. Пластинчасті ланцюги застосовуються головним чином в гарячих і хімічних цехах де дротяні канати швидко окислюються і виходять з ладу.
73670. Блоки і поліспасти у ВПМ 259 KB
  Якщо нерухомий блок служить тільки для зміни напряму гнучкого елементу то рухомий блок служить як для виграшу в силі так і швидкості. Гнучкі елементи вживані в ВПМ не є абсолютно гнучкими тілами а володіють певною жорсткістю яка виражається у тому що набігаюча гілка гнучкого елементу не відразу укладається на блоці а збігаюча гілка не відразу випрямляється на що потрібна витрата додаткового зусилля. У реальних умови з урахуванням цих втрат або тут Gгр вага вантажу що розуміється...
73671. Деталі для навівки і звивання гнучких елементів 440.5 KB
  Барабани для багатошарової навівки каната застосовуються у виняткових випадках при вельми великих довжинах навиваного каната коли при одношаровій навівки потрібен надзвичайно великі розміри барабана. У гладких барабанах завжди є бурти. Нижній шар каната при багатошаровій навівки стикається з циліндровою поверхнею барабана по лінії унаслідок чого виникають високі контактні напруги...
73672. Механізми вантажопідйомних машин 338.5 KB
  Залежно від типу вантажопідйомної машини її призначення можуть бути різні комбінації механізмів основним з яких є механізм підйому. Механізми підйому ГПМ Механізми підйому служать для вертикального переміщення вантажів. Залежно від типу приводу розрізняють механізми підйому з ручним і машинним приводом – будівельна лебідка мал.
73673. Механізми пересування 351.5 KB
  У вантажопідйомних машинах загального призначення механізми пересування по конструктивній ознаці розрізняють: а механізми пересування з ручним приводом б механізми пересування з машинним приводом електричний і ДВС. По конструкції опорноходової частини механізми пересування підрозділяються: а на рейкові б на без рейкові. За принципом роботи механізми пересування підрозділяються на дві принципові схеми: а механізми у яких переміщення здійснюється за рахунок сил зчеплення приводних ходових коліс з рейкою або грунтом б механізми у...
73674. Вимоги до антен по параметрах електромагнітної сумісності 370 KB
  Вимоги до антен по параметрах електромагнітної сумісності Розвиток супутникових систем звязку супроводжується зростаючим завантаженням діапазонів радіочастот. Передумови для рішення проблеми ЭМС створюють відомі просторова й частотна вибірковості антен. При аналізі діаграми спрямованості апертурних антен широко застосовуваних у супутниковому...