13490

Принципы функционирования среды Matlab и Simulink

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа №1 на тему: Принципы функционирования среды Matlab и Simulink Дисциплина: ОПД.Ф.15. Теория автоматического управления 1. Цель работы. 1.1. Ознакомление с основными правилами структурного метода построения типовых звеньев используя библиотеку объектов S...

Русский

2013-05-11

178.5 KB

22 чел.

Лабораторная работа №1

на тему: Принципы функционирования среды Matlab и Simulink

Дисциплина: ОПД.Ф.15. «Теория автоматического управления»

1. Цель работы.

1.1. Ознакомление с основными правилами структурного метода построения типовых звеньев, используя библиотеку объектов Simulink.Основы анализа работы звеньев и систем созданных в Simulink.

2. Содержание работы:

2.1 Необходимо запустить MATLAB 6.5, далее в верхнем меню выбрать File -> New -> Model. Появится окно Simulink с заголовком «untitled», желательно его сразу сохранить, под именем, например: Lab№1.mdl.

2.2 Для работы потребуется окно Simulink Library Browser На панели инструментов есть пиктограмма , или в верхнем меню View -> Library Browser., В результате появятся два окна Lab№1 и Simulink Library Browser (рис 1).

Рис. 1 рабочая часть приложения Simulink и  Simulink Library Browser.

2.3 Пример построения  «Апериодического звена второго порядка».Схема будет состоять из следующих блоков:

2.3.1 «Constant» из раздела «Sources»- предназначен для моделирования постоянных задающих воздействий. Перемещение блока из библиотеки в окно моделирования выполняется следующим образом: курсор наводится на значок   в окне Simulink Library Browser и при нажатой ЛКМ (левая клавиша мыши) перетаскивается в окно Lab№1. Двойной клик мышью на этом изображении в окне Lab№1 откроет окно настроек параметров блока «Constant» (рис 2).

рис. 2. Окно настроек блока «Constant»

где «Constant value» - величина сигнала, генерируемая узлом.

2.3.2 «Transfer Fcn» из раздела «Continuous». Двойной клик на блоке вызывает его настройки (рис. 3).

Рис. 3. Окно настроек блока «Transfer Fcn».

2.3.3 «Scope» и «Display» из раздела «Sinks».

2.3.4 Соединяются блоки следующим образом: указатель мыши подводится к значку на узле «Constant» (он находится на правом вертикальном ребре), курсор меняется на знак «+», нажимают левую клавишу мыши и, не отпуская, ведут её до знака на узле «Transfer Fcn» получается соединение этих узлов в виде стрелки. Аналогично соединяются узлы «Transfer Fcn» и «Scope».

Для того, чтобы соединить «Transfer Fcn» и «Display» нужно в любом месте соединительной линии «Transfer Fcn» и «Scope» нажать правую клавишу, появится значок «+» вместо курсора, и не отпуская правой клавиши мыши вести курсор к узлу «Display».

2.3.5 В результате должна получиться схема изображённая на рисунке 4.

рис. 4. Демонстрационная схема «Апериодического звена второго порядка».

2.3.6 Устанавливаются параметры эмуляции, для этого выбирается пункт меню Simulation-> «Simulation parameters» и настраивается в соответствие с рис. 5.

рис. 5. Параметры эмуляции.

2.3.7 Теперь можно просмотреть результаты работы модели. Запускается модель нажатием на значок   на панели инструментов или через верхнее меню Simulation -> Start либо сочетанием клавиш Ctrl+t. В результате на блоке «Display» появится значение «2», соответствующее коэффициенту передачи. Просмотреть графическое изображение кривой переходного процесса звена можно, кликнув на узле «Scope». Пиктограмма автоматически выставит масштаб для просмотра графика в удобном для анализа представлении. График изображён на рис. 6.

рис. 6. График результатов работы сгенерированный блоком «Scope».

2.4 Также можно изменять формат объекта из контекстного меню.

  1.  Пункт «Format» и его подменю с пунктами:

«Font»- тип шрифта используемый для записи в блоке формулы и названия блока;

«Flip name»- изменение положения надписи блока «верх-низ», «право-лево»;

«Hide name»- Скрыть имя блока;

«Flip block»-поменять вход и выход блока «право-лево», «верх-низ»;

«Rotate block»-повернуть блок на 90о;

«Show drop shadow»- показать эффект тени для блока.

  1.  Цвет рамок и надписей блока в пункте «Foreground color», а также «заливку блока» с помощью пункта «Background color».

  1.  Для упрощения громоздких схем в «Simulink» предусмотрен блок под названием «Subsystem», находящийся в разделе «Ports & Subsystems».

Для его использования необходимо двойным кликом ЛКМ (рис.7). В открывшееся окно блока следует поместить ту совокупность блоков основной модели, которая не будет подвергаться изменению. Таким образом мы упростим представление модели. Если минимизируемая схема имеет несколько входов и выходов, следует добавить блоки «ln» и «out». Пример построения показан на рис. 8. На рис.9 изображена модель эквивалентная, изображённой на рис. 4.

рис. 7. Содержания блока «subsystem».

рис. 8. Пример исполнения нескольких выходов.

рис. 9. Модель с использованием блока «subsystem», имеющего 2 выхода.

  1.  Для объединения сигналов используется блок «Sum», находящийся в разделе «Math Operations» (рис. 10).

рис. 10. Сумматор

Основным параметром сумматора является количество входов и то, как они войдут в сумму. Параметр называется «List of signs» и может быть задан целочисленным значением >1, в этом случае все входы войдут со знаком «+», или строкой составленной из символов «+», «-» и «|»: «+» положительное вхождение сигнала, «-» отрицательное вхождение сигнала, «|» для визуального разделения на группы сигналов (рис. 11 и рис. 12).

   

рис. 11. Строковое задание параметра

рис. 12. Целочисленное задание параметра   

  1.  Для сбора сигналов в единую магистраль используется блок «Mux», находящийся в разделе «Signal Routing»

Основным параметром блока является количества входов (рис. 13).

Одним из вариантов применения блока является необходимость отображения нескольких сигналов на одном графике, что является более удобным при анализе (рис. 14).

рис. 13.

рис. 14. Графики сигналов объединённых в одной шине.

3. Отчёт.

3.1 Отчёт по лабораторным работам необходимо оформлять в Microsoft Word. План оформления отчёта будет изложен в ходе каждой лабораторной работы.

Отчёт имеет формальные параметры, которые надо соблюдать. Шрифт Times New Roman, размер шрифта 14пт, одинарный интервал, выравнивание по ширине.

Часто при создании отчёта будет необходимо скопировать изображение из MathLab в текстовый редактор. Для помещения графиков и схем в отчёт проще всего воспользоваться клавишей Print Screen (она находится рядом с клавишей F12). Чтобы скопировать изображение текущего окна с графиком или схемой в документ Word необходимо кликнуть ЛКМ на заголовке окна с этим графиком или схемой (оно станет активным), а затем нажать сочетание клавиш Alt+ Print Screen. В буфер обмена будет занесено изображение текущего окна. Далее в отчете MS Word устанавливаем курсор в то место, где должен находится график или схема и нажимаем сочетание клавиш Ctrl+V (Shift+Insert).


 

А также другие работы, которые могут Вас заинтересовать

38926. Межкадровая фильтрация и измерение динамических параметров 56 KB
  Кроме того изменения параметров динамического объекта за время Тк невелики опять же не всегда а в подавляющем большинстве случаев. применение к последним межкадрового усредения приведёт скорее всего к нежелательным последствиям например размазыванию изображения движущегося объекта. Но обычно перед ТВсистемами стоит задача измерения динамических параметров в частности непрерывный контроль за текущим состоянием объекта которые не могут быть определены однократным измерением. Так например скорость объекта где положения...
38927. Представление и преобразование цифровых сигналов в телевизионных измерительных системах 31.5 KB
  Оцифровка представление объекта изображения или сигнала в дискретном наборе цифровых замеров. Для решения задач машинной графики обработки и распознавания изображений используются следующие этапы преобразования изображения: Предварительная обработка операции восстановления фильтрации улучшения визуального восприятия изображения. Формирование графического препарата обработка с целью вычленения характерных особенностей изображениясегментация выделение контуров скелетизация Анализ выявление характерных особенностей...
38928. Простой пороговый метод нелинейной фильтрации импульсных помех 51.5 KB
  Сигнал от каждого из элементов массива анализируемого изображения сравнивается со средним значением сигнала для небольшой группы mxn в окрестностях данного элемента Здесь m и n нечётные числа. Анизотропная фильтрация Анизотропная фильтрация относится к категории линейных процедур цифровой обработки массива [Eij ]. Он заключается выполнении операции свёртки исходного массива изображения формата M×N со скользящим сглаживающим массивом [W] меньшего формата m×n ядро свёртки. А поскольку в АТСН работающих в реальном масштабе времени...
38929. Цифровое представление изображения в виде матрицы отсчетов. Преимущество цифрового кодирования видеосигнала 66 KB
  Цифровое представление изображения в виде матрицы отсчетов. Это позволяет пронумеровать отсчеты цифрового видеосигнала в соответствии с позиционным положением элемента изображения в телевизионном растре и nti = ni j где i номер элемента в строке; j номер строки. Фактически номера i j являются цифровыми координатами элемента изображения которые в случае линейных разверток связаны с временными и геометрическими координатами соотношениями где j порядковый номер строки в которой находится элемент изображения; tx интервал...
38930. Линейные цифровые фильтры и их характеристики 47 KB
  Под термином цифровая фильтрация обычно понимают локальную цифровую обработку сигнала скользящим окном или аппертурой. Для каждого положения окна за исключением возможно небольшого числа крайних точек выборки выполняются однотипные действия которые определяют так называемый отклик или выход фильтра. Если действия определяющие отклик фильтра не изменяются в процессе перемещения по выборке сигнала то соответствующий фильтр называется стационарным. Различают линейную и нелинейную цифровую фильтрацию.
38931. Развитие видеозаписи на дисках. Видеопроигрыватели Laser Vision. Структурная схема и принцип работы 265 KB
  Диаметр 30 см; Длительность 30 мин. Диаметр 30 см; Длительность 5 мин; 156 об мин. Диаметр 21 см; Длительность 10 мин цвет; 1500 об мин; 280 канавок мм; четкость 250 линий. Диаметр 30 см; длительность 30 мин; четкость 250 линий.
38932. Цифровая запись видеосигнала. Достоинства по сравнению с аналоговой. Основные принципы цифровой видеозаписи 60 KB
  Цифровая запись видеосигнала пришла на смену аналоговым носителям как более гибкое и удобное средство формирования транспортировки и хранения видеоданных. аналоговый сигнал сглаживается менее подверженным искажениям менее зависимым от аппаратной реализации воспроизведения расширяются возможности обработки сигнала Требования к АЦП: Частота квантования не менее 135 МГц Число разрядов не менее 8 Число каналов: Для чернобелого 1 Для цветного 3 или 2 Дискретизация: Дискретизация дает некоторые искажения: Стоит...
38933. Компрессия с потерей информации. Свойства зрения, используемые для сжатия ВС. Основные методы компрессии с потерей информации 46 KB
  Наибольшее распространение для сжатия движущихся изображений получил стандарт MPEG. MPEG англ. MPEG стандартизовала следующие стандарты сжатия: MPEG1: Исходный стандарт видео и аудио компрессии. MPEG2: видео и аудиостандарты для широковещательного телевидения.
38934. Стандарт VHS. Основные принципы функционирования. Параметры и характеристики 170.5 KB
  Формат видеозаписи VHS Наиболее распространенным сегодня в бытовой видеозаписи особенно в СНГ остается формат VHS Video Home System разработанный японскими фирмами Mtsushit и JVC еще в 1975 году. Первоначально для записи и воспроизведения изображения применялись две видеоголовки размещенные на вращающемся барабане расположенном наклонно относительно ленты. В дальнейшем для возможности экономной записи и воспроизведения при меньшей скорости ленты режим LP long ply а так же для улучшения качества воспроизводимой картинки в...