13493

КОРРЕКЦИЯ СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ СВОЙСТВ САУ

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа №10. Тема: КОРРЕКЦИЯ СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ СВОЙСТВ САУ Дисциплина: ОПД.Ф.15. Теория автоматического управления 1. ЦЕЛЬ РАБОТЫ Эта работа нацелена на приобретение студентами навыков анализа и синтеза САУ : 1 определение характеристик С...

Русский

2013-05-11

209.5 KB

16 чел.

Лабораторная работа №10.

Тема: «КОРРЕКЦИЯ СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ СВОЙСТВ САУ»

Дисциплина: ОПД.Ф.15. «Теория автоматического управления»

1. ЦЕЛЬ РАБОТЫ

Эта работа нацелена на приобретение студентами навыков анализа и синтеза САУ :

1) определение характеристик САУ, которые необходимо скорректировать;

2) обеспечение точности (уменьшение статической ошибки) САУ;

3) выбор значений параметров регулятора, обеспечивающих желаемые динамические свойства САУ;

4) подтверждение (путем моделирования) того, что в результате введения корректирующего устройства (регулятора) САУ приобрела желаемые свойства.

2. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Коррекция статических и динамических свойств САУ имеет своей целью повышение статической и динамической точности отработки системой задающего воздействия (или парирование возмущающего воздействия), повышение запасов ее устойчивости. Наиболее распространенными способами коррекции свойств САУ является изменение коэффициента усиления ее разомкнутой части, введение в САУ новых звеньев (как правило, интегрирующего или дифференцирующего типа), охват объекта управления местной обратной связью.

2.1. Коррекция статических свойств САУ

Статические свойства системы определяется величиной установившейся ошибки  вызванной действием задающего воздействия  и определяемой по формуле

  (1)

Величины  называются коэффициентами ошибок и определяются по формулам:

(2)

где - передаточная функция САУ по ошибке управления, равная

        (3)

      - передаточная функция разомкнутой САУ.

Основными способами уменьшения статической ошибки системы являются:

1) увеличение коэффициента усиления прямого тракта системы;

2) введение в прямой тракт система интегрирующих звеньев;

3) охват объекта управления местной неединичной положительной обратной связью.

Представим структурную схему системы в виде, изображенном на рис.1 где через  обозначена передаточная функция неизменяемой части системы

   (4)

Здесь и далее полагается, что  - изменяемый коэффициент усиления регулятора системы.

Первые два коэффициента ошибок  и  определяется выражениями:

       (5)

      (6)

Из (5) и (6) с учетом (1) вытекает, что с увеличением K статическая ошибка в системе уменьшается и наоборот, с уменьшением K статическая ошибка в системе увеличивается.

Введем в прямой тракт системы одно интегрирующее звено (рис.2). В этом случае  .

Так как  то система на рис.2 является астатической (с астатизмом первого порядка). Система имеет нулевую статическую ошибку при отработке постоянного задающего воздействия  и постоянную, обратно пропорциональную K, ошибку  при отработке линейно изменяющегося воздействия  .

   g(t)         ε(t)    y(t)     g(t)         ε(t)           y(t)

 Рис. 1      Рис. 2

Охватим неизменяемую часть системы  местной неединичной положительной обратной связью с коэффициентом усиления  (рис.3). Тогда эквивалентная передаточная функция  неизменяемой части системы равна

(7)

Если коэффициент усиления K выбрать из условия

        (8)

то свободный коэффициент полинома знаменателя  

обратится в нуль и  приобретает интегрирующие свойства:

 (9)

Следовательно, замкнутая система становится астатической (с астатизмом 1-го порядка). Отсюда =0, а коэффициент  будет равен

         (10)

     Wэкв(s)

 g(t)  ε(t)      y(t)

     

    Рис. 3

2.2. Коррекция динамических свойств САУ

Улучшение динамических свойств САУ заключается в увеличении быстродействия САУ (уменьшении времени регулирования tрег), уменьшении перерегулирования  (см. рис.4), а также увеличении запасов устойчивости по фазе  и по модулю (см. лабораторную работу УТС-2). При этом

  

где -максимальное значение переходной характеристики замкнутой САУ ;

      - установившееся значение .

Время регулирования tрег - минимальная величина, при которой удовлетворяется условие:

   

где  - заданная величина ошибки (обычно =0,05).

          h(t)

          2δ

        hуст

        hmax

           t

         tрег

    Рис. 4

Одним из эффективных средств достижения этой цели является уменьшение отрицательных фазовых сдвигов в прямом тракте системы путем охвата неизменяемой части системы местными отрицательными обратными связями.

На рис. 5 R(s) представляет собой передаточную функцию регулятора САУ, которая считается заданной.

     Wэкв(s)

g(t)  ε(t)   u(t)           y(t)

    Рис. 5

Пусть неизменяемая часть системы представляет собой апериодическое звено первого порядка, т.е.

      (11)

Тогда передаточная функция  эквивалентного объекта управления равна

    (12)

где и  - коэффициент усиления и постоянная времени эквивалентного объекта, равные:

     (13)

           (14)

Из (14) следует, что соответствующим выбором  постоянную времени

эквивалентного объекта можно уменьшить в (1+) раз по сравнении с постоянной времени  объекта без местной обратной связи. Тем самым уменьшаются отрицательные фазовые сдвиги, вносимые прямым трактом системы, что приводит к увеличению запасов устойчивости системы. При этом, однако, уменьшается в (1+) раз коэффициент усиления  эквивалентного объекта по сравнению с коэффициентом усиления  объекта без местной обратной связи. Это нежелательно, так как приводит к уменьшению быстродействия системы вследствие уменьшения общего коэффициента усиления прямого тракта системы. В этом случае с целью обеспечения необходимого быстродействия системы увеличивают коэффициент усиления регулятора.

3. СОДЕРЖАНИЕ РАБОТЫ

3.1. При исследовании способов коррекции статических свойств САУ в качестве исходных данных выступают передаточная функция  неизменяемой части системы вида 

     (15)

и задающие воздействия вида

   а)      б)

в соответствии с задаваемым преподавателем вариантом работы (см. таблицу).

В процессе выполнения этой части работы студенты должны:

  1.  путем моделирования на РС исходной САУ (рис. 6) получить

графики

2) сравнить полученную таким образом экспериментальную величину  с теоретической, вычисленной по формула (1);

3) применяя описанные в теоретической части методических указаний способы коррекции статических свойств (см. п.2.1), обеспечить требуемую статическую ошибку  системы при отработке задающего воздействия

4) получить графики  и  в скорректированной системе для

а)     б).

5) сравнить время регулирования   и перерегулирование   в исходной и скорректированной системах при  

3.2. При исследовании рассмотренного способа коррекции динамических свойств САУ (см. п. 2.2) в качестве исходных данных выступают передаточная функция  неизменяемой части системы вида (15) и передаточная функция регулятора вида

        (16)

Задающее воздействие .

В процессе выполнения данной части работы студенты должны:

  1.  получить путем моделирования на РС графики ,  в системе

(рис. 7);

2) определить время регулирования  и перерегулирование , а также запасы устойчивости в исходной системе;

3) применяя описанный выше способ коррекции динамических свойств САУ, найти экспериментально (путем последовательного перебора) значение , обеспечивающее в системе заданные преподавателем показатели качества (,)и запасы устойчивости (при необходимости увеличить коэффициент);

4) получить графики , , а также ЛАХ и ЛФХ разомкнутой системы в скорректированной САУ.

g(t)      ε(t)   y(t)      g(t)  ε(t)      u(t)           y(t)

 Рис. 6      Рис. 7

        Таблица

         № варианта

Параметры

1

2

3

4

5

6

7

8

a

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

K0

1

2

3

4

5

6

7

8

           T, c

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

ξ

0,6

0,7

0,8

0,8

0,7

0,9

0,5

0,4

0

0

0,05

0

0,10

0,07

0

0

          tрег , c   ≤

1,3

1,5

2,0

2,5

3,0

3,5

4,0

4,0

          , %   

0

10

10

5

5

5

0

0

4. СОДЕРЖАНИЕ ОТЧЁТА

  1.  Цель работы.

2. Структурные схемы исследуемых систем.

3. Полученные графики и характеристики.

4. Расчётная часть.

5. Основные выводы.

5. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Дать определение статической и астатической САУ.

2. Какими структурными свойствами системы определяется порядок ее астатизма?

  1.  Какой из двух приведенных выше способов придания системе свойств астатизма 1-го порядка наиболее предпочтителен на практике?

4. Назовите основные показатели качества САУ. Поясните их смысл.

5. В чём суть исследуемого способа коррекции динамических свойств САУ?

Назвать другие способы коррекции динамических свойств САУ.

6. Чем вызваны отрицательные фазовые сдвиги в неизменяемой части САУ?

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Власов К.П. Теория автоматического управления. Учебное пособие. Х.: Изд-во Гуманитарный центр, 2007. − 256 с. − ISBN 966-8324-33-1

2. Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. - М. : Наука, 1975.

3. Воронов А.А. Основы теории автоматического управления. Ч.1.

- М.: Энергия, 1965.

4. Основы теории автоматического управления /Под ред.           

Н.Б. Судзиловского. - М. : Машиностроение, 1985.

5. Красовский А.А., Поспелов Г.С. Основы автоматики и технической кибернетики. - М.: Госэнергоиздат. 1962.


 

А также другие работы, которые могут Вас заинтересовать

20114. Синтез последовательных корректирующих звеньев 130.5 KB
  Рассмотрим основные виды обр. Жесткая отрицательная обр. связь осуществляется за счет охвата некоторого элемента сисмы обр. связью с передаточной функцией усилительного звена то есть в цепи обр.
20115. Шлифовальные станки. Их классификация 7.26 MB
  Шлифовальные станки. В зависимости от вида обработки шлифовые станки подразделяются на: станки общего назначения; специализированные станки. Круглошлифовальные станкию.
20116. Причины возникновения погрешностей измерительных устройств 27 KB
  Погрешности схемы прибора. Технологические погрешности. Динамические погрешности. Температурные погрешности.
20117. Методы размерного точностного синтеза. 104.5 KB
  Основная задача: выбор номинальных параметров измерительной цепи по критерию min теоретической погрешности. С точки зрения min погрешности существуют 3 категории ИУ: Устройство которые должны иметь min погрешность только при определенном значении входного сигнала. Для них min погрешность – это min наклон погрешности Все остальные ИУ у которых при любом значении входного сигнала одинакова неприятна теоретическая погрешность. Min погрешность для них – min модуля максимума погрешности.
20118. Погрешности показаний, обусловленные схемой измерительного устройства 34 KB
  устройства: Действительное показание устройства: Погрешность показаний измер. устройства: Функция в общем случае не линейна может быть сложной и только в частном случае линейной. устройства а второй член оставшийся в правой части.
20119. Средства измерения шероховатости поверхности 188.5 KB
  В настоящее время накоплен значительный теоретический и эксплуатационный материалы по связи шероховатости со следующими эксплуатационными показателями: 1 – износостойкость при всех видах трения; 2 – контактная жесткость; 3 – выносливость; 4 – прочность посадок с натягом; 5 – отражательная способность поверхности; 6 – прочность сцепления при склеивании; 7 – коррозионная стойкость; 8 – лакокрасочные покрытия; 9 – точность при измерении. После отражения от поверхности пучок проходит 2 и 10 и попадает на 6. Поэтому оператор через окуляр 7 видит:...
20120. Приборы для измерения резьбовых и зубчатых деталей 57.5 KB
  Рассмотрим наиболее распространённые методы и средства контроля основных параметров однозаходной цилиндрической резьбы. Изза сложности проверки внутренней резьбы в обычных производственных условиях производят её комплексный контроль. Погрешности среднего диаметра резьбы возникают изза действия тех же факторов что и при обработке гладких цилиндрических изделий. Влияние этих факторов в процессе резьбообразования может изменяться = изменяется величина погрешности по длине резьбы.
20121. Классификация средств измерений линейных и угловых величин 24.5 KB
  Средства измерения – техническое средство предназначенное для количественной оценеи измеряемых величин длина угол и имеюшее нормированные метрологические свойства. Измерительные приборы средства измерения предназначен ные для выработки сигнала измерительной информации в форме доступной для непосредственного восприятия наблюдателем. По физическому принципу действия приборы для измерения длин и углов подразделяют на: Механические; Оптико механические; Оптические; Пневматическиеэлектрические; Электронные; Опто электронные. По назначению...
20122. Требования, предъявляемые к приборам для измерения длин и углов 25.5 KB
  К приборам для измерения длин и углов могут предъявляться следующие требования: Точности; Надежности; Экологичность; Техническая эстетика; Безопасности; Безопасность обслуживания – наличие устройств заземления блокировок аварийной сигнализации и т. ; Высокая точность измерения одно из основных требований предъявляемых к приборам для измерения длин и углов. Если раньше погрешность измерения в 15 2 считалась нормальной и достаточно удовлетворительной то в настоящее время нередко требуется иметь погрешность не более 02 05 .