1350

Разработка объемного гидропривода поступательного действия

Курсовая

Производство и промышленные технологии

Разработка принципиальной гидравлической схемы. Расчет и выбор силовых гидродвигателей, насоса и рабочей жидкости. Расчет и выбор гидроаппаратов. Расчет гидролиний. Тепловой расчет гидропривода. Расчет внешней характеристики гидропривода.

Русский

2013-01-06

148.5 KB

45 чел.

СОДЕРЖАНИЕ

Введение 4

1 Разработка принципиальной гидравлической схемы. 5

2 Расчет и выбор силовых гидродвигателей, насоса и рабочей жидкости 3 Расчет и выбор гидроаппаратов 8

4 Расчет гидролиний 9

5 Тепловой расчет гидропривода 12

6 Расчет внешней характеристики гидропривода 14

Библиографический список 16

ВВЕДЕНИЕ

Применение гидравлического привода и средств гидроавтоматики является одним из перспективных направлений современного развития машиностроения. Около 70 % горных, строительных, дорожных, землеройных, подъемно-транспортных машин и установок оснащены гидроприводом.

Под объемным гидроприводом понимается совокупность устройств, в число которых входит один или несколько объемных гидродвигателей, предназначенных для приведения в движение механизмов и машин с помощью рабочей жидкости под давлением. Основой насосного гидропривода является объемный насос, создающий напор рабочей жидкости, которая обладает в основном энергией давления. Эта энергия преобразовывается затем в механическую работу. Благодаря высокому объемному модулю упругости рабочей жидкости в объемном гидроприводе обеспечивается практически жесткая связь между его входными и выходными органами.

Объемный насосный гидропривод с приводом от электродвигателя широко применяется в современных машинах и механизмах. Это объясняется такими преимуществами гидропривода как: высокая компактность при небольших габаритах и массе, приходящейся на единицу мощности; возможность реализации больших передаточных чисел; хорошие динамические свойства привода; возможность плавного и широкого регулирования скорости движения исполнительного органа; надежное предохранение приводного электродвигателя от перегрузок; простота преобразования вращательного и поступательного движения друг в друга; высокое быстродействие и малое время разгона подвижных частей; гидропривод легко управляется и автоматизируется. Благодаря обильной и постоянной смазке гидропривод долговечен и надежен. Он позволяет плавно, в широком диапазоне регулировать движение исполнительного органа. Объемный гидропривод допускает достаточно произвольное расположение его элементов на машине, что чрезвычайно важно для мобильных машин, работающих в сложных условиях.

К недостаткам гидропривода относятся: сравнительно невысокий КПД; необходимость высокой герметичности гидроаппаратов, а следовательно, точность обработки деталей, что обусловливает их относительно повышенную стоимость; возможность нестабильной работы, вызываемой температурными колебаниями вязкости рабочей жидкости.

1 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ ГИДРАВЛИЧЕСКОЙ

СХЕМЫ

Н - насос с постоянной подачей (с постоянным направлением потока); Р - трехпозиционный реверсивный золотник с соединением нагнетательной линии со сливом и запертыми полостями цилиндра; Г.З. - гидрозамок (клапан обратный управляемый, двусторонний); Ц - цилиндр двустороннего действия с подводом рабочей жидкости через цилиндр; КП - клапан предохранительный (с собственным управлением); Ф - фильтр для жидкости; Б - бак под атмосферным давлением.

2 РАСЧЕТ И ВЫБОР СИЛОВЫХ ГИДРОДВИГАТЕЛЕЙ,

НАСОСА И РАБОЧЕЙ ЖИДКОСТИ

Расчет и выбор гидроцилиндра

Расчетное значение диаметра гидроцилиндра D определяется в соответствии с формулой (3.1) [1]:

где P расчетное давление рабочей жидкости на входе в гидроцилиндр;

 F2 усилие на штоке;

 ηмех механический КПД гидроцилиндра, принимаем согласно [1], с.28:

ηмех = 0,95…0,96

Давление P предварительно принимаем согласно [1], с.28:

P = (0,85...0,9) · PH ,

где РН  номинальное давление в гидросистеме.

P = 0,87 · 16 = 14,4 МПа.

Принимаем диаметр поршня и штока (φ = 1,6) в соответствии с таблицей 3.1 [1]: D2 = 160 мм; d2 = 100 мм.

Для принятого диаметра D2 рабочее давление жидкости Р2 у гидроцилиндра составит по формуле (3.3) [1]:

Расход жидкости, подводимой в поршневую полость гидроцилиндра, составит по формуле (3.4) [1]:

где v2 заданная скорость движения поршня;

 η0 объемный КПД гидроцилиндра.

Расчет и выбор гидронасоса

Расчетная подача гидронасоса Q1P определяется из условия неразрывности потока жидкости, которое с точностью до утечек в гидролиниях и гидроаппаратуре, что допустимо на стадии предварительного расчета, согласно формулы (3.5) [1]:

Q1P = Q2P.

Расчетный рабочий объем гидронасоса VОР определяют по формуле (3.6) [1]:

где n1  номинальная частота вращения вала насоса, с-1;

 η01 объемный КПД гидронасоса.

По таблице 3.2 [1], выбираем насос МНА с рабочим объёмом  номинальным давлением  частотой вращения 1500 мин-1; η01 = 0,95; полный КПД η = 0,91; масса 59 кг.

С учетом фактических параметров принятого гидронасоса действительная его подача будет, по формуле (3.7) [1]:

где V01 и η01  рабочий объем и объемный КПД принятого типоразмера

      гидронасоса;

 n1  номинальная частота вращения вала гидронасоса по условиям задания.

Выбор рабочей жидкости

По таблице 3.3 [1] для умеренно-холодного климата принимаем рабочую жидкость ВМГЗ:

3 РАСЧЕТ И ВЫБОР ГИДРОАППАРАТОВ

По расходу жидкости и давлению для нашего случая по расходу и номинальному давлению РН = 16 МПа:

Принимаем по таблице 3.4 [1] распределитель типа Р-16 у которого:

При расходе  потери давления будут меньше 0,2 МПа.

Выбираем по таблице 3.7 [1] предохранительный клапан типа БГ 52-14 у которого:

Выбираем схему исполнения реверсивного золотника с ручным управлением, в соответствии с рекомендациями [1], с.32 типа 64БГ74-22.

Выбираем по таблице 3.8 [1] гидрозамок типа КУ-20 у которого:

Выбираем по таблице 3.9 [1] фильтр типа ФП7-20-10 у которого:

Объем бака  ориентировочно определяется по формуле (3.8) [1]:

где   подача гидронасоса, л/мин.

 

Принимаем в соответствии с рекомендациями ГОСТ 16770:

4 РАЧЕТ ГИДРОЛИНИЙ

Расчетный диаметр гидролиний определяется по формуле (3.9) [1]:

где Q  расход жидкости на рассматриваемом участке, м/с

   (подача насоса );

  допускаемая скорость движения рабочей жидкости в трубопроводе.

Принимаем в соответствии с рекомендациями [1], с.35:

- для всасывающего трубопровода

- для сливного  

- для напорного при  и  < 10 м, допускаемая скорость

по ГОСТ 8734 принимаем

по ГОСТ 8734 принимаем

по ГОСТ 8734 принимаем

По принятым диаметрам определяется действительная скорость движения жидкости в напорном, сливном и всасывающем трубопроводах по формуле (3.10) [1]:

Расчет гидравлических потерь определим только в напорной гидролинии.

Потери давления по длине трубопровода определяются по формуле (3.11) [1]:

где ρ  плотность рабочей жидкости;

 λ  коэффициент гидравлического трения;

 l  длина гидролинии;

 v  скорость движения жидкости;

 d  диаметр напорной гидролинии.

Для определения коэффициента гидравлического трения сначала необходимо определить режим движения жидкости, для чего определяется значение числа Рейнольдса по формуле (3.12) [1]:

где   кинематическая вязкость рабочей жидкости.

Так как  >  следовательно режим движения жидкости турбулентный. Для турбулентного режима, в соответствии с рекомендациями [1]:

Коэффициент гидравлического трения в переходной зоне и зоне вполне шероховатых труб определяться по формуле (3.15) [1]:

Потери давления в местных сопротивлениях определяются по формуле (3.16) [1]:

где  коэффициент местного сопротивления.

В качестве местных сопротивлений учитываем: входы в гидрораспределитель, гидрозамок и гидроцилиндр ; место присоединения гидролинии предохранительного гидроклапана к напорной гидролинии  и два закругленных колена .

Действительные потери давления в гидрораспределителе и гидрозамке определяются по формулам (3.17) и (3.18) [1]:

где и номинальные потери давления в гидрораспределителе и

       гидрозамке в соответствии с их техническими характеристиками;

 QPH и Q  номинальные расходы рабочей жидкости через гидрораспределитель

      и гидрозамок в соответствии с их техническими характеристиками;

  подача гидронасоса.

Суммарные потери давления в гидроаппаратах определяются по формуле (3.19) [1]:

Суммарные потери давления в напорном трубопроводе определяются по формуле (3.20) [1]:

Суммарные потери давления в напорной гидролинии 4% что не превышает 5...6 % номинального давления.

При этом

<

где Р2 давление у гидроцилиндра.

<

Следовательно, гидронасос не перегружен.

5 ТЕПЛОВОЙ РАСЧЕТ ГИДРОПРИВОДА

Энергия, затраченная на преодоление различных сопротивлений в гидроприводе, в конечном итоге превращается в теплоту, что вызывает нагрев рабочей жидкости и нежелательное снижение ее вязкости. Приближенно считается, что полученная с рабочей жидкостью теплота должна отдаваться в окружающую среду через поверхность бака, трубопроводы, гидроаппаратуру.

Расчет теплового баланса выполним для тяжелого режима ”Т”. Гидропривод работает при максимальной нагрузке на штоке гидроцилиндра  с продолжительностью включения:

Тепловой поток через поверхности охлаждения (стенки бака) эквивалентен потерянной мощности, определяется по формуле (3.22) [1]:

где   мощность гидронасоса;

   полезная мощность на штоке гидроцилиндра.

Полезная мощность определяется по формуле (3.24) [1]:

где F2  усилие на штоке в соответствии с заданием;

 v2 действительная скорость движения штока.

Действительная скорость движения штока v2 определяется по формуле (3.25) [1]:

где   утечки рабочей жидкости в гидрораспределителе, принимаемые в

    соответствии с его технической характеристикой.

Утечки жидкости в других гидроаппаратах не учитываем из-за их малости.

Потребная площадь поверхности охлаждения определяется по формуле (3.26) [1]:

где k0  коэффициент теплопередачи;

 tж  температура жидкости: tж = 50 °С;

 tB  температура воздуха: tВ = 20 °С.

Шафорост А.Н.

Общая поверхность бака, определяется следующим образом:

Поверхности трубопроводов:

Суммарную необходимую площадь поверхности охлаждения определяем по формуле:

<

Маслобак гидросистемы.

6 РАСЧЕТ ВНЕШНЕЙ ХАРАКТЕРИСТИКИ ГИДРОПРИВОДА

Применительно к проектируемому гидроприводу под внешней характеристикой понимают зависимость скорости перемещения штока гидроцилиндра от усилия на штоке . Для построения графика внешней характеристики необходимо задаться несколькими (не менее 4...5) значениями F2i в пределах 0 < F2i < F2.

F2 = 0 кН; 210 кН; 240 кН; 270 кН; 300 кН;

Каждому значению усилия F2i соответствует давление P2i гидроцилиндра, которое определяется по формуле (3.27) [1]:

Поскольку потери давления в напорном трубопроводе практически не зависят от давления в напорном трубопроводе, то соответствующие значения давления ΔP2i у гидронасоса определяются по формуле (3.28) [1]:

где ΔР потери давления.

С увеличением давления P1i возрастают утечки рабочей жидкости в гидронасосе ΔQ1i и в гидрораспределителе ΔQPi. Поэтому действительная подача рабочей жидкости в гидроцилиндр с возрастанием усилия F2i уменьшается. В связи с этим уменьшается и скорость движения штока v2i, значение которой определяется по формуле (3.29) [1]:

где Q1T  теоретическая подача гидронасоса;

 ΔQ1i и ΔQPi  утечки рабочей жидкости в гидронасосе и гидрораспределителе. При этом

Утечки рабочей жидкости в гидронасосе и гидрораспределителе определяются по формулам (3.31) и (3.32) [1]:

где а1 и а2 коэффициенты утечек для гидронасоса и гидрораспределителя.

Коэффициенты утечек определяются по формулам (3.33) и (3.34) [1]:

Оценим степень снижения скорости движения штока при изменении усилия F2i от нуля до F2, по формуле (3.35) [1]:

где v20  скорость движения штока при F2 = 0.

При этом давление насоса будет равным суммарным гидровлическим потерям:

Результаты расчетов сведем в таблицу 6.1.

 

Таблица 6.1 Результаты расчетов гидропривода

Внешняя нагрузка

 F2i, кН

0

150

180

210

240

270

300

Давление в гидроцилиндре

 P2i, МПа

0

7,86

9,43

10,99

12,57

14,14

15,71

Давление насоса P1i, МПа

0,645

8,51

10,1

11,64

13,22

14,79

16,36

Утечки жидкости

0,00198 ·10-3

0,026·10-3

0,031·10-3

0,036·10-3

0,04·10-3

0,045·10-3

0,05·10-3

Скорость штока 

0,048

(2,88)

0,047

(2,82)

0,047

(2,82)

0,047

(2,82)

0,046

(2,76)

0,046

(2,76)

0,0457

(2,74)

Заполняя таблицу считаем:

По полученным данным строится график внешней характеристики , см. рисунок 6.1.

Полученная внешняя характеристика достаточно жесткая и

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Разработка объемного гидропривода поступательного действия / А.А. Подколзин, О.М. Пискунов, К.В. Демин; Тул. гос. ун-т. – Тула, 2003. – 58 с.

2. Гидравлика, гидромашины и гидроприводы / Т.М. Башта, С.С. Руднев, Б.Б. Некрасов и др. – 2-е изд., перераб. – М.: Машиностроение,1982. – 423 с.

3. Гидравлика и гидропривод / В.Г. Гейер, B.C. Дулин, А.Г. Боруменский и др. М.: Недра, 1981, 295 c.


 

А также другие работы, которые могут Вас заинтересовать

42356. Освоение методики работы с инструментальным пакетом fuzzy для проектирования регуляторов 84 KB
  В результате применения Fuzzy-регулятора в системе, получены графики переходных процессов, которые свидетельствуют об удовлетворительном качестве регулирования (малое перерегулирование, соблюдение ограничений системы).
42357. Опрацювання результатів вимірювання при виконанні лабораторних робіт фізичного практикума з використанням математичної системи MCAD 1.22 MB
  Метою математичної обробки результатів прямих вимірювань є обчислення найбільш достовірного значення вімірюваної величини та оцінка її точності. Така обробка основана на методах теорії ймовірності та математичної статистики яка передбачає випадковий характер зміни величини що аналізується. Основними характеристиками випадкової величини є математичне сподівання середнє значення випадкової величини усереднення якої здійснюється для великої кількості вимірювань та дисперсія кількісна міра флуктуацій випадкових величин що...
42358. ЭЛЕКТРОННЫЕ И КВАНТОВЫЕ ПРИБОРЫ СВЧ 190 KB
  Управление и контроль за ходом выполнения работы осуществляется с помощью выводимых на экран дисплея базового меню и меню отдельных этапов работы. Организация начального этапа выполнения работы Исполнимый модуль запускается средствами предусмотренными данной операционной системой после чего на экране дисплея появляется базовое меню. Выполнение работы начинается с набора и ввода номера соответствующего пункта базового меню которым на начальном этапе является номер 2 номер 1 используется для завершения работы в целом или ее...
42359. Technologies of the aircraft systems refilling by the special gases 2.54 MB
  Brief theoreticl dt The onbord ircrft systems re refilled by the following specil gses: medicl oxygen for brething of crew nd pssengers in the cse of cockpit depressuriztion; nitrogen is refilled in chmbers of shock bsorbers of lnding ger gseous chmbers of hydrulic ccumultor tnks superchrging system for the hydrulic system nd fuel system; compressed ir for refilling in chmbers of shock bsorbers of lnding ger nd wheels tires. Refilling of the onbord ircrft systems by medicl oxygen is the most difficult nd dngerous technologicl...
42360. Technologies of the aircraft systems refilling by the special liquids 4.27 MB
  Technologies of the ircrft systems refilling by the specil liquids The purpose of work is to study the technologicl equipment nd fetures of its ppliction technology for refilling of the ircrft onbord systems by the specil liquids Brief theoreticl dt 1. Servicer by the specil liquids ZSG66 is intended for refilling of the ircrft onbord systems by synthetic nd minerl oils oil mixtures strting fuel gsoline hydrulic mixtures. Servicer by the specil liquids cn crry out the following procedures: refilling of own tnks by the own pump; ...
42361. Air start up of aviation engines 487.5 KB
  ir strt up of vition engines The purpose of work is fmiliriztion with equipment intended for ir wy jet engines strt up. Brief theoreticl dt To perform n ir gs turbine engine strt up without uxiliry power unit PU running specil selfpropelled or towed ir Strt Units SU re pplied. They deliver compressed continuous ir strem to the ircrft onbord strter inlet for driving the ir strting turbine wheel locted on ech jet engine tht rottes the high pressure engine stge shft ccomplishing the gs turbine engine strt up procedure. Intention generl...
42362. Electric power start up of aviation engines 689 KB
  Electric power strt up of vition engines The purpose of work is fmiliriztion with the equipment intended for ircrft onbord power circuit supply for engine strt up nd power delivery of onbord consumers. Brief theoreticl dt To supply the prticulr electric power proper to the ircrft onbord power circuit when the min engines nd uxiliry power unit re not running specil selfpropelled or towed Ground Power Units re pplied for tht purposes. It lso llows performing n electricl power strt up of min ircrft jet engines by spinning the high...
42363. Technologies of towbar towing of aircraft 2.32 MB
  Technologies of towbr towing of ircrft The purpose of work is fmiliriztion with the bsic technologicl fetures of ircrft towing nd pushbck procedure sfety of towing procedure lbour precution issues. Filure to do so cn result in dmge to the ircrft cncelltion of flight delys or disruption of trvel for our customers pssengers s well s potentil dngerous dmge to other ircrft or vehicles. Fmiliriztion with the equipment nd towbrs being used including prctice with the pushbck vehicle nd ttched towbr to chieve necessry control to follow...