13500

Грибоедов Александр Сергеевич

Доклад

Исторические личности и представители мировой культуры

Грибоедов Александр Сергеевич 1795-1829 Русский писатель поэт драматург дипломат. Александр Грибоедов родился 15 января по старому стилю 4 января 1795 в некоторых источниках указан 1790 в Москве в старинной дворянской семье. Дворянский род Грибоедовых шляхетск

Русский

2013-05-11

40.5 KB

0 чел.

Грибоедов Александр Сергеевич

(1795-1829)

 

Русский писатель, поэт, драматург, дипломат. Александр Грибоедов родился 15 января (по старому стилю - 4 января) 1795 (в некоторых источниках указан 1790) в Москве, в старинной дворянской семье. "Дворянский род Грибоедовых - шляхетского происхождения. Ян Гржибовский переселился в Россию в первой четверти XVII столетия. Его сын, Федор Иванович, был разрядным дьяком при царях Алексее Михайловиче и Федоре Алексеевиче и первый стал писаться Грибоедовым." ("Русский биографический словарь")Детство прошло в московском доме любящей, но своенравной и непреклонной матери Александра - Настасьи Федоровны (1768-1839) (Новинский бульвар, 17). Александр и его сестра Мария (1792-1856; в замужестве - М.С.Дурново) получили серьезное домашнее образование: гувернерами были образованные иностранцы - Петрозилиус и Ион, для частных уроков приглашались профессора университета. В 1803

Александр был определен в Московский Благородный университетский пансион. В 1806 Александр Грибоедов поступил на словесный факультет Московского университета, который окончил в 1808 со званием кандидата словесности; продолжил обучение на этико-политическом отделении; в 1810 окончил юридический, а затем поступил на физико-математическй факультет. С момента обучения в университете и на всю жизнь Александр Сергеевич сохранил любовь к занятиям историей и к экономическим наукам.

Среди произведений - пьесы, стихи, публицистика, письма: "Пьсьмо из Бреста Литовского к издателю" (1814; письмо к издателю "Вестника Европы"), "О кавалерийских резервах" (1814, статья), "Описание праздника в честь Кологривова" (1814, статья), "Молодые супруги" (1815, комедия; переделка пьесы Крезе де Лессера "Семейный секрет" 1807), "Своя семья, или Замужняя невеста" (1817, комедия; в соавторстве с А.А.Шаховским и Н.И.Хмельницким: Грибоедову принадлежат пять явлений второго акта), "Студент" (1817, комедия; в соавторстве с П.А.Катениным), "Притворная неверность" (1818, пьеса; в соавторстве с А.Жандром), "Проба интермедии" (1819, пьеса), "Горе от ума" (1822-1824, комедия; возникновение замысла - в 1816, первая постановка - 27 ноября 1831 в Москве, первая публикация, урезанная цензурой - в 1833, полная публикация - в 1862), "1812 год" (драма; отрывки опубликованы в 1859), "Грузинская ночь" (1827-1828, трагедия; публикация - 1859), "Частные случаи петербургского наводнения" (статья), "Загородная поездка" (статья). Музыкальные произведения: известно два вальса для фортепиано.


 

А также другие работы, которые могут Вас заинтересовать

20493. Інтерполяційний многочлен Лагранжа 61.5 KB
  Для n 1 пар чисел де всі різні існує єдиний многочлен степеня не більшого від n для якого . Лагранж запропонував спосіб обчислення таких многочленів: де базисні поліноми визначаються за формулою: Очевидно що ljx мають такі властивості: Це поліноми степеня n при Звідси випливає що Lx як лінійна комбінація ljx може мати степінь не більший від n та Lxj = yj. Нехай для функції fx відомі значення yj = fxj у деяких точках. Тоді ця функція може інтерполюватися як Зокрема Значення інтегралів від lj не залежать від fx...
20494. Клітинні матриці. Дії над клітинними матрицями 49.5 KB
  Дана форма запису матриці має важливе теоретичне значення у лінійній алгебрі і при розв'язуванні систем диференціальних рівнянь. Наприклад матриця: Власними значеннями даної матриці A є λ = 1 2 4 4. Розмірність ядра матриці A − 4In дорівнює 1 отже A не допускає діагоналізації.
20497. Структурна природна мова 31 KB
  В наукових дослідженнях все більш вагоме місце посідають розробки що орієнтовані на опрацювання природномовної ПМ інформації бо остання визначається як узагальнена схема подання довільної інформації. Проте з іншого боку також відомо наскільки складною постає проблема обробки мовної інформації і прогрес у цій сфері однозначно пов'язується з рівнем формалізації опису природної мови. Здобувачем запропоновано формальну модель мови що визначає її системну організацію і яка закладається в основу сучасних технологій орієнтованих на...
20498. Таблиці та дерева рішень 38.5 KB
  Метод дерева рішень це один з методів автоматичного аналізу величезних масивів даних. Область використання методу дерева рішень можна об'єднати в три класи: опис даних: застосування дерева рішень дозволяє зберігати інформацію про вибірку даних в компактній і зручній для обробки формі що містить в собі точні описи об'єктів; класифікація: застосування дерева рішень дозволяє справитися із завданнями класифікації тобто відношення об'єктів до одного з описаних класів; регресія: якщо змінна має недостовірні значення то застосування дерева...
20499. Теорія реляційних баз даних. Основні терміни і означення. Нормалізація відношень 31 KB
  Реляційна база даних база даних основана на реляційній моделі даних. Інакше кажучи реляційна база даних це база даних яка сприймається користувачем як набір нормалізованих відношень різного ступеню. Метою нормалізації є усунення недоліків структури БД які призводять до шкідливої надмірності в даних яка в свою чергу потенційно призводить до різних аномалій і порушень цілісності даних.
20500. Трикутні матриці (верхня та нижня) і їх розклад на добуток двох трикутних 37 KB
  Трику́тна ма́триця матриця в якій всі елементи нижче або вище за головну діагональ рівні нулю. Верхньотрикутна матриця квадратна матриця в якій всі елементи нижче за головну діагональ дорівнюють нулю. Нижньотрикутна матриця квадратна матриця в якій всі елементи вище за головну діагональ дорівнюють нулю. Унітрикутна матриця верхня або нижня трикутна матриця в якій всі елементи на головній діагоналі дорівнюють одиниці.
20501. Форми, типи форм, обчислення в формах 33 KB
  Робота з формами може відбуватися в трьох режимах: у режимі Форми в режимі Таблиці в режимі констриктор. типи форм В Access можна створити форми наступних видів: форма в стовпець або повноекранна форма; стрічкова форма; таблична форма; форма головна підпорядкована; зведена таблиця; формадіаграма. Форма в стовпець є сукупністю певним чином розташованих полів введення з відповідними їм мітками і елементами управління.