13532

Системы счисления и двоичное представление информации в памяти компьютера

Конспект урока

Информатика, кибернетика и программирование

Системы счисления и двоичное представление информации в памяти компьютера. Что нужно знать: перевод чисел между десятичной двоичной восьмеричной и шестнадцатеричной системами счисления см. презентацию Системы счислени

Русский

2015-04-22

218 KB

67 чел.

А1 (базовый уровень, время – 1 мин)

Тема:  Системы счисления и двоичное представление информации в памяти компьютера.

Что нужно знать:

  •  перевод чисел между десятичной, двоичной, восьмеричной и шестнадцатеричной системами счисления (см. презентацию «Системы счисления»)

Полезно помнить, что в двоичной системе:

  •  четные числа оканчиваются на 0, нечетные – на 1;
  •  числа, которые делятся на 4, оканчиваются на 00, и т.д.; числа, которые делятся на 2k, оканчиваются на k нулей
  •  если число N принадлежит интервалу 2k-1  N < 2k, в его двоичной записи будет всего k цифр, например, для числа 125:

 26 = 64  125 < 128 = 27,    125 = 11111012  (7 цифр)

  •  числа вида 2k записываются в двоичной системе как единица и k нулей, например:

 16 = 24 = 100002

  •  числа вида 2k-1 записываются в двоичной системе k единиц, например:

 15 = 24-1 = 11112

  •  если известна двоичная запись числа N, то двоичную запись числа 2·N можно легко получить, приписав в конец ноль, например:
    15 = 1111
    2,  30 = 111102,         60 = 1111002,  120 = 11110002
  •  отрицательные целые числа хранятся в памяти в двоичном дополнительном коде (подробнее см. презентацию «Компьютер изнутри»)
  •  для перевода отрицательного числа (-a) в двоичный дополнительный код нужно сделать следующие операции:
    •  перевести число a-1 в двоичную систему счисления
    •  сделать инверсию битов: заменить все нули на единицы и единицы на нули в пределах разрядной сетки (см. пример далее)

Пример задания:

Сколько единиц в двоичной записи числа 1025? 

1) 1            2)  2       3)  10  4) 11

Решение (вариант 1, прямой перевод):

  1.  переводим число 1025 в двоичную систему: 1025 = 100000000012
  2.  считаем единицы, их две
  3.  Ответ: 2

Возможные проблемы:

легко запутаться при переводе больших чисел.

Решение (вариант 2, разложение на сумму степеней двойки):

  1.  тут очень полезно знать наизусть таблицу степеней двойки, где 1024 = 210 и 1 = 20
  2.  таким образом, 1025=  1024 + 1 = 210 + 20
  3.  вспоминая, как переводится число из двоичной системы  в десятичную (значение каждой цифры умножается на 2 в степени, равной её разряду), понимаем, что в двоичной записи числа ровно столько единиц, сколько в приведенной сумме различных степеней двойки, то есть, 2
  4.  Ответ: 2

Возможные проблемы:

нужно помнить таблицу степеней двойки.

Когда удобно использовать:

  •  когда число чуть больше какой-то степени двойки

Ещё пример задания:

Дано: и . Какое из чисел с, записанных в двоичной системе счисления, удовлетворяет неравенству a < c < b?    

1) 110110012            2)  110111002          3)  110101112          4) 110110002

Общий подход:

перевести все числа (и исходные данные, и ответы) в одну (любую!) систему счисления и сравнить.

Решение (вариант 1, через десятичную систему):

  1.  
  2.  
  3.  переводим в десятичную систему все ответы:

110110012 = 217, 11011100 2= 220, 110101112 = 215, 110110002=216

  1.  очевидно, что между числами 215 и 217 может быть только 216
  2.  таким образом, верный ответ – 4 .

Возможные проблемы:

арифметические ошибки при переводе из других систем в десятичную.

Решение (вариант 2, через двоичную систему):

  1.   (каждая цифра шестнадцатеричной системы отдельно переводится в четыре двоичных – тетраду);
  2.   (каждая цифра восьмеричной системы отдельно переводится в три двоичных – триаду, старшие нули можно не писать);
  3.  теперь нужно сообразить, что между этими числами находится только двоичное число 110110002 – это ответ 4.

Возможные проблемы:

запись двоичных чисел однородна, содержит много одинаковых символов – нулей и единиц, поэтому легко запутаться и сделать ошибку.

Решение (вариант 3, через восьмеричную систему):

  1.  (сначала перевели в двоичную систему, потом двоичную запись числа разбили на триады справа налево, каждую триаду перевели отдельно в десятичную систему, так как для чисел от 0 до 7 их восьмеричная запись совпадает с десятичной);
  2.  ,  никуда переводить не нужно;
  3.  переводим в восьмеричную систему все ответы:

110110012 = 011  011  0012  = 3318 (разбили на триады справа налево, каждую триаду перевели отдельно в десятичную систему, как в п. 1)

11011100 2= 3348, 110101112 = 3278, 110110002=3308

  1.  в восьмеричной системе между числами 3278 и 3318 может быть только 3308
  2.  таким образом, верный ответ – 4 .

Возможные проблемы:

нужно помнить двоичную запись чисел от 0 до 7 (или переводить эти числа в двоичную систему при решении).

Решение (вариант 4, через шестнадцатеричную систему):

  1.   никуда переводить не нужно;
  2.   (сначала перевели в двоичную систему, потом двоичную запись числа разбили на тетрады справа налево, каждую тетраду перевели в шестнадцатеричную систему; при этом тетрады можно переводить из двоичной системы в десятичную, а затем заменить все числа, большие 9, на буквы – A, B, C, D, E, F);
  3.  переводим в шестнадцатеричную систему все ответы:

110110012 = 1101 10012  = D916 (разбили на тетрады справа налево, каждую тетраду перевели отдельно в десятичную систему, все числа, большие 9, заменили  на буквы – A, B, C, D, E, F, как в п. 1)

11011100 2= DC16, 110101112 = D716, 110110002=D816

  1.  в шестнадцатеричной системе между числами D716 и D916 может быть только D816
  2.  таким образом, верный ответ – 4 .

Возможные проблемы:

нужно помнить двоичную запись чисел от 0 до 15 (или переводить эти числа в двоичную систему при решении).

Выводы:

  •  есть несколько способов решения, «каждый выбирает для себя»;
  •  наиболее сложные вычисления – при переводе всех чисел в десятичную систему, можно легко ошибиться;
  •  сравнивать числа в двоичной системе сложно, также легко ошибиться;
  •  видимо, в этой задаче наиболее простой вариант – использовать восьмеричную систему, нужно просто запомнить двоичные записи чисел от 0 до 7 и аккуратно все сделать;
  •  в других задачах может быть так, что выгоднее переводить все в десятичную или шестнадцатеричную систему счисления.

Еще пример задания:

Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-78)? 

1) 3            2)  4           3)  5  4) 6

Решение (вариант 1, классический):

  1.  переводим число 78 в двоичную систему счисления:

78 = 64 + 8 + 4 + 2 = 26 + 23 + 22 + 21 = 10011102

  1.  по условию число занимает в памяти 1 байт = 8 бит, поэтому нужно представить число с помощью 8 разрядов
  2.  чтобы получилось всего 8 разрядов (бит), добавляем впереди один ноль:

78 = 010011102

  1.  делаем инверсию битов (заменяем везде 0 на 1 и 1 на 0):

010011102     →    101100012  

  1.  добавляем к результату единицу

101100012  + 1 = 101100102

это и есть число (-78) в двоичном дополнительно коде

  1.  в записи этого числа 4 единицы
  2.  таким образом, верный ответ – 2 .

Возможные ловушки и проблемы:

  •  нужно не забыть в конце добавить единицу, причем это может быть не так тривиально, если будут переносы в следующий разряд – тут тоже есть шанс ошибиться из-за невнимательности

Решение (вариант 2, неклассический):

  1.  переводим число 78 – 1=77 в двоичную систему счисления:

77 = 64 + 8 + 4 + 1 = 26 + 23 + 22 + 20 = 10011012

  1.  по условию число занимает в памяти 1 байт = 8 бит, поэтому нужно представить число с помощью 8 разрядов
  2.  чтобы получилось всего 8 разрядов (бит), добавляем впереди один ноль:

77 = 010011012

  1.  делаем инверсию битов (заменяем везде 0 на 1 и 1 на 0):

010011012     →    101100102  

это и есть число (-78) в двоичном дополнительно коде

  1.  в записи этого числа 4 единицы
  2.  таким образом, верный ответ – 2 .

Возможные ловушки и проблемы:

  •  нужно помнить, что в этом способе в двоичную систему переводится не число a, а число
    a-1; именно этот прием позволяет избежать добавления единицы в конце (легче вычесть в десятичной системе, чем добавить в двоичной)

Решение (вариант 3, неклассический):

  1.  переводим число 78 в двоичную систему счисления:

78 = 64 + 8 + 4 + 2 = 26 + 23 + 22 + 21 = 10011102

  1.  по условию число занимает в памяти 1 байт = 8 бит, поэтому нужно представить число с помощью 8 разрядов
  2.  чтобы получилось всего 8 разрядов (бит), добавляем впереди один ноль:

78 = 010011102

  1.  для всех битов, которые стоят слева от младшей единицы, делаем инверсию битов (заменяем везде 0 на 1 и 1 на 0):

010011102     →    101100102  

это и есть число (-78) в двоичном дополнительно коде

  1.  в записи этого числа 4 единицы
  2.  таким образом, верный ответ – 2 .

Возможные ловушки и проблемы:

  •  нужно помнить, что при инверсии младшая единица и все нули после нее не меняются


Задачи для тренировки
1:

  1.  Как представлено число 8310 в двоичной системе счисления?

1)  10010112 2) 11001012  3) 10100112  4) 1010012 

  1.  Сколько единиц в двоичной записи числа 195?

1)  5 2) 2 3) 3  4) 4

  1.  Сколько единиц в двоичной записи числа 173?

1)  7 2) 5 3) 6  4) 4

  1.  Как представлено число 25 в двоичной системе счисления?

1)  10012  2) 110012  3) 100112  4) 110102

  1.  Как представлено число 82 в двоичной системе счисления?

1)  10100102 2) 10100112  3) 1001012  4) 10001002

  1.  Как представлено число 263 в восьмеричной системе счисления?

1)  3018  2) 6508  3) 4078  4) 7778

  1.  Как записывается число 5678 в двоичной системе счисления?

1)  10111012 2) 1001101112  3) 1011101112  4) 111101112

  1.  Как записывается число A8716 в восьмеричной системе счисления?

1)  4358  2) 15778  3) 52078   4) 64008

  1.  Как записывается число 7548 в шестнадцатеричной системе счисления?

1)  73816  2) 1A416  3) 1EC16   4) A5616

  1.  Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-128)?

1) 1            2)  2           3)  3  4) 4

  1.  Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-35)?

1) 3            2)  4           3)  5  4) 6

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 100110102            2)  100111102           3)  100111112  4) 110111102

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111110012            2)  110110002           3)  111101112  4) 111110002

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 110110102            2)  111111102           3)  110111102  4) 110111112

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111010102            2)  111011102           3)  111010112  4) 111011002

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111010102            2)  111010002           3)  111010112  4) 111011002

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 110100112            2)  110011102           3)  110010102  4) 110011002

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111000112            2)  110110102           3)  101011012  4) 110111012

  1.  Сколько единиц в двоичной записи числа 64?

1) 1   2)  2  3)  4   4) 6

  1.  Сколько единиц в двоичной записи числа 127?

1) 1   2)  2  3)  6   4) 7

  1.  Сколько значащих нулей в двоичной записи числа 48?

1) 1   2)  2  3)  4   4) 6

  1.  Сколько значащих нулей в двоичной записи числа 254?

1) 1   2)  2  3)  4   4) 8

  1.  Какое из чисел является наименьшим?

1) E616   2)  3478  3)  111001012  4) 232

  1.  Какое из чисел является наибольшим?

1) 9B16   2)  2348  3)  100110102  4) 153

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 101011002            2)  101010102           3)  101010112  4) 101010002

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 110110102            2)  111111102           3)  110111112  4) 110111102

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 100010102            2)  100011102           3)  100100112  4) 100011002

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111010102            2)  111011102           3)  111011002  4) 111010112

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 101010102            2)  101111002           3)  101000112  4) 101011002

  1.  Сколько единиц в двоичной записи числа 173?

1) 4   2)  5  3)  6   4) 7

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 10000002            2)  10001102           3)  10001012  4) 10001112

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 100010012            2)  100011002           3)  110101112  4) 111110002

  1.  Дано: , . Какое из чисел С, записанных в шестнадцатеричной системе счисления, удовлетворяет неравенству ?

1) AA16             2)  B816           3)  D616   4) F016

  1.  Дано: , . Какое из чисел Z, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 1111110012            2)  1111001112           3)  1101111002  4) 1101101112

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 101110102            2)  101010102           3) 1010101002   4) 101000102

  1.  Сколько единиц в двоичной записи десятичного числа 513?

1) 5 2) 2  3) 3  4) 4

  1.  Сколько нулей в двоичной записи десятичного числа 497?

1) 5 2) 2  3) 3  4) 4

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит ровно 3 единицы.

1) 1 2) 11  3) 3  4) 33

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит ровно 2 единицы.

1) 7 2) 11  3) 12  4) 15

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит ровно 4 единицы.

1) 15 2) 21  3) 32  4) 35

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит ровно 2 единицы.

1) 14 2) 16  3) 18  4) 31

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит ровно 3 единицы.

1) 8 2) 10  3) 12  4) 14

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит наибольшее количество единиц.

1) 13 2) 14  3) 15  4) 16

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит наибольшее количество единиц.

1) 23 2) 24  3) 25  4) 26

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит наибольшее количество значащих нулей.

1) 3 2) 8  3) 11  4) 15

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит наибольшее количество значащих нулей.

1) 13 2) 18  3) 21  4) 25

  1.  Даны 4 целых числа, записанные в двоичной системе:
     10001011, 10111000, 10011011, 10110100.
    Сколько среди них чисел, больших, чем А4
    16 +208?

1) 1 2) 2  3) 3  4) 4

  1.  Даны 4 целых числа, записанные в двоичной системе:
     10101011, 11001100, 11000111, 11110100.
    Сколько среди них чисел,
    меньших, чем BC16 +208?

1) 1 2) 2  3) 3  4) 4

  1.  Даны 4 целых числа, записанные в двоичной системе:
     11000000, 11000011, 11011001, 11011111.
    Сколько среди них чисел, больших, чем A
    B16 +258?

1) 1 2) 2  3) 3  4) 4

  1.  Даны 4 целых числа, записанные в двоичной системе:
     10111010, 10110100, 10101111, 10101100.
    Сколько среди них чисел, меньших, чем 9
    C16 +378?

1) 1 2) 2  3) 3  4) 4

1 Источники заданий:


Демонстрационные варианты  2004-2013 гг.


Тренировочные и диагностические работы МИОО.


Гусева И.Ю. . Информатика: раздаточный материал тренировочных тестов. — СПб: Тригон, 2009.


Якушкин П.А., Лещинер В.Р., Кириенко Д.П.   2010. Информатика. Типовые тестовые задания. — М.: Экзамен, 2010.


Абрамян М.Э., Михалкович С.С., Русанова Я.М., Чердынцева М.И.  Информатика.  шаг за шагом. — М.: НИИ школьных технологий, 2010.


Чуркина Т.Е.  2011. Информатика. Тематические тренировочные задания. — М.: Эксмо, 2010.


Самылкина Н.Н., Островская Е.М.  2011. Информатика. Тематические тренировочные задания. — М.: Эксмо, 2010.


 

А также другие работы, которые могут Вас заинтересовать

25562. Р. Декарт о «страстях души» 34 KB
  Декарт о страстях души Рене Декарт 15961650 лат. В трактате Страсти души 1649 представлена вся система философскопсихологических взглядов Декарта Картезианский дуализм: существует 2 субстанции: Протяженная телесная физика материализм в учении Мыслящая духовная метафизика светский идеализм в учении осн. Страсти тип или уровень деятельности который является продуктом взаимодействия тела и души. Состояния души кот.
25563. Детерминистическое учение Б. Спинозы о психике 31.5 KB
  Учение о единой субстанции ее атрибутах и модусах Стремился объяснить природу из самой себя. Ее сущность раскрывается в атрибутах Атрибуты такие существенные и всеобщие аспекты субстанции которые ей не тождественны и по отношению к которой они вторичные и производные. конкретные фундаментальные свойства субстанции Человеку доступны только 2 атрибута: мышления и протяжения Кстати Декарт Модусы частные состояния и видоизменения субстанции все многообразие мира различные явления и события По отношению к атрибуту протяжения каждый...
25564. Г. Лейбниц и его монадология 29 KB
  Монады истинные атомы природы душеподобные единицы. Они просты неделимы вечны автономны не влияют друг на друга Свойства монад: Активность стремление Изначально заданное содержание врожденные представления Жизнь монады стремление и переход от смутных представлений Перцепций к более ясным представлениям апперцепции Иерархия монад: Земные: Чистые монады есть активность нет представлений неживая вечно движущаяся материя Монадыдуши смутные представления низкая степень стремления к ясности растения животные...
25565. Т. Гоббс и его представления о природе психического 33.5 KB
  Состояния Чувственные эффекты внутренних противодвижений призраки или образы: Противодвижения в мозге возникновение образов вещей и представлений Противодвижения в сердце вызывают усиление торможение и следовательно удовлетворение неудовлетворение Исходная форма психического чувственный опыт Крайняя форма сенсуализма: в основе всего лежат ощущения и все психические состояния производные от них и все проходит через ощущение. Мышление целенаправленное оперирование образами представлений. Операции: Сложение соединение...
25566. Психологическая система взглядов Дж. Локка 33.5 KB
  от рождения идеи бога души добра и зла не даны. Сны по Локку это идеи бодрствующего человека соединенные между собой причудливым образом. Сами же идеи не возникают пока органы чувств не снабдят нас ими. Идеи содержание опыта ощущения образы восприятия представления памяти общие понятия аффективноволевые состояния Первоначально душа чистый лист на который при жизни внешний мир наносит воздействия.
25567. Учение И. Канта об априорных формах сознания 32 KB
  Группы связей в априорных формах мышления: Категории рассудка: Категории количества: единство множество цельность Категории качества: реальность отрицание ограничение Категории отношения: субстанция и принадлежность причина и следствие взаимодействие Категории модальности: возможность и невозможность существование и несуществование предопределенность и случайность Идеи чистого разума: Идея абсолютного субъекта предмет рациональной психологии Идея мира предмет рациональной космологии Идея бога предмет рациональной...
25568. Наброс нагрузки на асинхронный двигатель 482.5 KB
  Если при этом механический момент Ммех окажется больше максимального Ммех Мm то двигатель будет увеличивать свое скольжение до s= 1 т. Пусть при этом моменте двигатель находится в установившемся состоянии точка а на рис. Электромагнитныи момент двигателя упадет при этом в Уравнение движения будет иметь вид: При уменьшении электромагнитного момента с М0 до M1 двигатель будет тормозиться и остановится.
25569. Возникновение ассоциативной психологии 33.5 KB
  Он определял ассоциации как неверные ненадежные способы комбинирования простых идей случайные и пассивные связи. Это основа возникновения идей и произвольных движений. Всем этим ассоциациям соответствуют ассоциированные дрожания нервных волокон для ощущений и движений или вибрации мозгового вещества для осознаваемых идей и сложных психических процессов. Все они различные виды ассоциаций ощущений или идей.
25570. Пуск асинхронных двигателей, имеющих мощность, соизмеримую с мощностью источника питания 1.31 MB
  Выбор допустимой пусковой мощности асинхронного двигателя производится следующим образом. средние значения КПД и коэффициента мощности самозапускаемых двигателей; Если предположить что напряжение на сборных шинах равно U = 105 UH действительно напряжение на шинах 400 В вместо 380 В то напряжение на шинах в момент пуска будет равно: где суммарная мощность самозапускаемых двигателей. Дефицит активной мощности в энергосистеме обуславливает снижение частоты. Обычно одновременно с появлением дефицита активной мощности в энергосистеме...