13532

Системы счисления и двоичное представление информации в памяти компьютера

Конспект урока

Информатика, кибернетика и программирование

Системы счисления и двоичное представление информации в памяти компьютера. Что нужно знать: перевод чисел между десятичной двоичной восьмеричной и шестнадцатеричной системами счисления см. презентацию Системы счислени

Русский

2015-04-22

218 KB

64 чел.

А1 (базовый уровень, время – 1 мин)

Тема:  Системы счисления и двоичное представление информации в памяти компьютера.

Что нужно знать:

  •  перевод чисел между десятичной, двоичной, восьмеричной и шестнадцатеричной системами счисления (см. презентацию «Системы счисления»)

Полезно помнить, что в двоичной системе:

  •  четные числа оканчиваются на 0, нечетные – на 1;
  •  числа, которые делятся на 4, оканчиваются на 00, и т.д.; числа, которые делятся на 2k, оканчиваются на k нулей
  •  если число N принадлежит интервалу 2k-1  N < 2k, в его двоичной записи будет всего k цифр, например, для числа 125:

 26 = 64  125 < 128 = 27,    125 = 11111012  (7 цифр)

  •  числа вида 2k записываются в двоичной системе как единица и k нулей, например:

 16 = 24 = 100002

  •  числа вида 2k-1 записываются в двоичной системе k единиц, например:

 15 = 24-1 = 11112

  •  если известна двоичная запись числа N, то двоичную запись числа 2·N можно легко получить, приписав в конец ноль, например:
    15 = 1111
    2,  30 = 111102,         60 = 1111002,  120 = 11110002
  •  отрицательные целые числа хранятся в памяти в двоичном дополнительном коде (подробнее см. презентацию «Компьютер изнутри»)
  •  для перевода отрицательного числа (-a) в двоичный дополнительный код нужно сделать следующие операции:
    •  перевести число a-1 в двоичную систему счисления
    •  сделать инверсию битов: заменить все нули на единицы и единицы на нули в пределах разрядной сетки (см. пример далее)

Пример задания:

Сколько единиц в двоичной записи числа 1025? 

1) 1            2)  2       3)  10  4) 11

Решение (вариант 1, прямой перевод):

  1.  переводим число 1025 в двоичную систему: 1025 = 100000000012
  2.  считаем единицы, их две
  3.  Ответ: 2

Возможные проблемы:

легко запутаться при переводе больших чисел.

Решение (вариант 2, разложение на сумму степеней двойки):

  1.  тут очень полезно знать наизусть таблицу степеней двойки, где 1024 = 210 и 1 = 20
  2.  таким образом, 1025=  1024 + 1 = 210 + 20
  3.  вспоминая, как переводится число из двоичной системы  в десятичную (значение каждой цифры умножается на 2 в степени, равной её разряду), понимаем, что в двоичной записи числа ровно столько единиц, сколько в приведенной сумме различных степеней двойки, то есть, 2
  4.  Ответ: 2

Возможные проблемы:

нужно помнить таблицу степеней двойки.

Когда удобно использовать:

  •  когда число чуть больше какой-то степени двойки

Ещё пример задания:

Дано: и . Какое из чисел с, записанных в двоичной системе счисления, удовлетворяет неравенству a < c < b?    

1) 110110012            2)  110111002          3)  110101112          4) 110110002

Общий подход:

перевести все числа (и исходные данные, и ответы) в одну (любую!) систему счисления и сравнить.

Решение (вариант 1, через десятичную систему):

  1.  
  2.  
  3.  переводим в десятичную систему все ответы:

110110012 = 217, 11011100 2= 220, 110101112 = 215, 110110002=216

  1.  очевидно, что между числами 215 и 217 может быть только 216
  2.  таким образом, верный ответ – 4 .

Возможные проблемы:

арифметические ошибки при переводе из других систем в десятичную.

Решение (вариант 2, через двоичную систему):

  1.   (каждая цифра шестнадцатеричной системы отдельно переводится в четыре двоичных – тетраду);
  2.   (каждая цифра восьмеричной системы отдельно переводится в три двоичных – триаду, старшие нули можно не писать);
  3.  теперь нужно сообразить, что между этими числами находится только двоичное число 110110002 – это ответ 4.

Возможные проблемы:

запись двоичных чисел однородна, содержит много одинаковых символов – нулей и единиц, поэтому легко запутаться и сделать ошибку.

Решение (вариант 3, через восьмеричную систему):

  1.  (сначала перевели в двоичную систему, потом двоичную запись числа разбили на триады справа налево, каждую триаду перевели отдельно в десятичную систему, так как для чисел от 0 до 7 их восьмеричная запись совпадает с десятичной);
  2.  ,  никуда переводить не нужно;
  3.  переводим в восьмеричную систему все ответы:

110110012 = 011  011  0012  = 3318 (разбили на триады справа налево, каждую триаду перевели отдельно в десятичную систему, как в п. 1)

11011100 2= 3348, 110101112 = 3278, 110110002=3308

  1.  в восьмеричной системе между числами 3278 и 3318 может быть только 3308
  2.  таким образом, верный ответ – 4 .

Возможные проблемы:

нужно помнить двоичную запись чисел от 0 до 7 (или переводить эти числа в двоичную систему при решении).

Решение (вариант 4, через шестнадцатеричную систему):

  1.   никуда переводить не нужно;
  2.   (сначала перевели в двоичную систему, потом двоичную запись числа разбили на тетрады справа налево, каждую тетраду перевели в шестнадцатеричную систему; при этом тетрады можно переводить из двоичной системы в десятичную, а затем заменить все числа, большие 9, на буквы – A, B, C, D, E, F);
  3.  переводим в шестнадцатеричную систему все ответы:

110110012 = 1101 10012  = D916 (разбили на тетрады справа налево, каждую тетраду перевели отдельно в десятичную систему, все числа, большие 9, заменили  на буквы – A, B, C, D, E, F, как в п. 1)

11011100 2= DC16, 110101112 = D716, 110110002=D816

  1.  в шестнадцатеричной системе между числами D716 и D916 может быть только D816
  2.  таким образом, верный ответ – 4 .

Возможные проблемы:

нужно помнить двоичную запись чисел от 0 до 15 (или переводить эти числа в двоичную систему при решении).

Выводы:

  •  есть несколько способов решения, «каждый выбирает для себя»;
  •  наиболее сложные вычисления – при переводе всех чисел в десятичную систему, можно легко ошибиться;
  •  сравнивать числа в двоичной системе сложно, также легко ошибиться;
  •  видимо, в этой задаче наиболее простой вариант – использовать восьмеричную систему, нужно просто запомнить двоичные записи чисел от 0 до 7 и аккуратно все сделать;
  •  в других задачах может быть так, что выгоднее переводить все в десятичную или шестнадцатеричную систему счисления.

Еще пример задания:

Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-78)? 

1) 3            2)  4           3)  5  4) 6

Решение (вариант 1, классический):

  1.  переводим число 78 в двоичную систему счисления:

78 = 64 + 8 + 4 + 2 = 26 + 23 + 22 + 21 = 10011102

  1.  по условию число занимает в памяти 1 байт = 8 бит, поэтому нужно представить число с помощью 8 разрядов
  2.  чтобы получилось всего 8 разрядов (бит), добавляем впереди один ноль:

78 = 010011102

  1.  делаем инверсию битов (заменяем везде 0 на 1 и 1 на 0):

010011102     →    101100012  

  1.  добавляем к результату единицу

101100012  + 1 = 101100102

это и есть число (-78) в двоичном дополнительно коде

  1.  в записи этого числа 4 единицы
  2.  таким образом, верный ответ – 2 .

Возможные ловушки и проблемы:

  •  нужно не забыть в конце добавить единицу, причем это может быть не так тривиально, если будут переносы в следующий разряд – тут тоже есть шанс ошибиться из-за невнимательности

Решение (вариант 2, неклассический):

  1.  переводим число 78 – 1=77 в двоичную систему счисления:

77 = 64 + 8 + 4 + 1 = 26 + 23 + 22 + 20 = 10011012

  1.  по условию число занимает в памяти 1 байт = 8 бит, поэтому нужно представить число с помощью 8 разрядов
  2.  чтобы получилось всего 8 разрядов (бит), добавляем впереди один ноль:

77 = 010011012

  1.  делаем инверсию битов (заменяем везде 0 на 1 и 1 на 0):

010011012     →    101100102  

это и есть число (-78) в двоичном дополнительно коде

  1.  в записи этого числа 4 единицы
  2.  таким образом, верный ответ – 2 .

Возможные ловушки и проблемы:

  •  нужно помнить, что в этом способе в двоичную систему переводится не число a, а число
    a-1; именно этот прием позволяет избежать добавления единицы в конце (легче вычесть в десятичной системе, чем добавить в двоичной)

Решение (вариант 3, неклассический):

  1.  переводим число 78 в двоичную систему счисления:

78 = 64 + 8 + 4 + 2 = 26 + 23 + 22 + 21 = 10011102

  1.  по условию число занимает в памяти 1 байт = 8 бит, поэтому нужно представить число с помощью 8 разрядов
  2.  чтобы получилось всего 8 разрядов (бит), добавляем впереди один ноль:

78 = 010011102

  1.  для всех битов, которые стоят слева от младшей единицы, делаем инверсию битов (заменяем везде 0 на 1 и 1 на 0):

010011102     →    101100102  

это и есть число (-78) в двоичном дополнительно коде

  1.  в записи этого числа 4 единицы
  2.  таким образом, верный ответ – 2 .

Возможные ловушки и проблемы:

  •  нужно помнить, что при инверсии младшая единица и все нули после нее не меняются


Задачи для тренировки
1:

  1.  Как представлено число 8310 в двоичной системе счисления?

1)  10010112 2) 11001012  3) 10100112  4) 1010012 

  1.  Сколько единиц в двоичной записи числа 195?

1)  5 2) 2 3) 3  4) 4

  1.  Сколько единиц в двоичной записи числа 173?

1)  7 2) 5 3) 6  4) 4

  1.  Как представлено число 25 в двоичной системе счисления?

1)  10012  2) 110012  3) 100112  4) 110102

  1.  Как представлено число 82 в двоичной системе счисления?

1)  10100102 2) 10100112  3) 1001012  4) 10001002

  1.  Как представлено число 263 в восьмеричной системе счисления?

1)  3018  2) 6508  3) 4078  4) 7778

  1.  Как записывается число 5678 в двоичной системе счисления?

1)  10111012 2) 1001101112  3) 1011101112  4) 111101112

  1.  Как записывается число A8716 в восьмеричной системе счисления?

1)  4358  2) 15778  3) 52078   4) 64008

  1.  Как записывается число 7548 в шестнадцатеричной системе счисления?

1)  73816  2) 1A416  3) 1EC16   4) A5616

  1.  Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-128)?

1) 1            2)  2           3)  3  4) 4

  1.  Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-35)?

1) 3            2)  4           3)  5  4) 6

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 100110102            2)  100111102           3)  100111112  4) 110111102

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111110012            2)  110110002           3)  111101112  4) 111110002

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 110110102            2)  111111102           3)  110111102  4) 110111112

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111010102            2)  111011102           3)  111010112  4) 111011002

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111010102            2)  111010002           3)  111010112  4) 111011002

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 110100112            2)  110011102           3)  110010102  4) 110011002

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111000112            2)  110110102           3)  101011012  4) 110111012

  1.  Сколько единиц в двоичной записи числа 64?

1) 1   2)  2  3)  4   4) 6

  1.  Сколько единиц в двоичной записи числа 127?

1) 1   2)  2  3)  6   4) 7

  1.  Сколько значащих нулей в двоичной записи числа 48?

1) 1   2)  2  3)  4   4) 6

  1.  Сколько значащих нулей в двоичной записи числа 254?

1) 1   2)  2  3)  4   4) 8

  1.  Какое из чисел является наименьшим?

1) E616   2)  3478  3)  111001012  4) 232

  1.  Какое из чисел является наибольшим?

1) 9B16   2)  2348  3)  100110102  4) 153

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 101011002            2)  101010102           3)  101010112  4) 101010002

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 110110102            2)  111111102           3)  110111112  4) 110111102

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 100010102            2)  100011102           3)  100100112  4) 100011002

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111010102            2)  111011102           3)  111011002  4) 111010112

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 101010102            2)  101111002           3)  101000112  4) 101011002

  1.  Сколько единиц в двоичной записи числа 173?

1) 4   2)  5  3)  6   4) 7

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 10000002            2)  10001102           3)  10001012  4) 10001112

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 100010012            2)  100011002           3)  110101112  4) 111110002

  1.  Дано: , . Какое из чисел С, записанных в шестнадцатеричной системе счисления, удовлетворяет неравенству ?

1) AA16             2)  B816           3)  D616   4) F016

  1.  Дано: , . Какое из чисел Z, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 1111110012            2)  1111001112           3)  1101111002  4) 1101101112

  1.  Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 101110102            2)  101010102           3) 1010101002   4) 101000102

  1.  Сколько единиц в двоичной записи десятичного числа 513?

1) 5 2) 2  3) 3  4) 4

  1.  Сколько нулей в двоичной записи десятичного числа 497?

1) 5 2) 2  3) 3  4) 4

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит ровно 3 единицы.

1) 1 2) 11  3) 3  4) 33

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит ровно 2 единицы.

1) 7 2) 11  3) 12  4) 15

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит ровно 4 единицы.

1) 15 2) 21  3) 32  4) 35

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит ровно 2 единицы.

1) 14 2) 16  3) 18  4) 31

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит ровно 3 единицы.

1) 8 2) 10  3) 12  4) 14

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит наибольшее количество единиц.

1) 13 2) 14  3) 15  4) 16

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит наибольшее количество единиц.

1) 23 2) 24  3) 25  4) 26

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит наибольшее количество значащих нулей.

1) 3 2) 8  3) 11  4) 15

  1.  Для каждого из перечисленных ниже десятичных чисел построили двоичную запись. Укажите число, двоичная запись которого содержит наибольшее количество значащих нулей.

1) 13 2) 18  3) 21  4) 25

  1.  Даны 4 целых числа, записанные в двоичной системе:
     10001011, 10111000, 10011011, 10110100.
    Сколько среди них чисел, больших, чем А4
    16 +208?

1) 1 2) 2  3) 3  4) 4

  1.  Даны 4 целых числа, записанные в двоичной системе:
     10101011, 11001100, 11000111, 11110100.
    Сколько среди них чисел,
    меньших, чем BC16 +208?

1) 1 2) 2  3) 3  4) 4

  1.  Даны 4 целых числа, записанные в двоичной системе:
     11000000, 11000011, 11011001, 11011111.
    Сколько среди них чисел, больших, чем A
    B16 +258?

1) 1 2) 2  3) 3  4) 4

  1.  Даны 4 целых числа, записанные в двоичной системе:
     10111010, 10110100, 10101111, 10101100.
    Сколько среди них чисел, меньших, чем 9
    C16 +378?

1) 1 2) 2  3) 3  4) 4

1 Источники заданий:


Демонстрационные варианты  2004-2013 гг.


Тренировочные и диагностические работы МИОО.


Гусева И.Ю. . Информатика: раздаточный материал тренировочных тестов. — СПб: Тригон, 2009.


Якушкин П.А., Лещинер В.Р., Кириенко Д.П.   2010. Информатика. Типовые тестовые задания. — М.: Экзамен, 2010.


Абрамян М.Э., Михалкович С.С., Русанова Я.М., Чердынцева М.И.  Информатика.  шаг за шагом. — М.: НИИ школьных технологий, 2010.


Чуркина Т.Е.  2011. Информатика. Тематические тренировочные задания. — М.: Эксмо, 2010.


Самылкина Н.Н., Островская Е.М.  2011. Информатика. Тематические тренировочные задания. — М.: Эксмо, 2010.


 

А также другие работы, которые могут Вас заинтересовать

3003. Повышение эффективности использования гусеничных сельско-хозяйственных тракторов тягового класса 3 путем их последова-тельного сочленения 231 KB
  Работа выполнена на кафедре Тракторы и автомобили Федерального государственного образовательного учреждения высшего профессионального образования Челябинский государственный агроинженерный университет. Научные руководители: доктор т...
3004. Азбука выживания в экстремальных ситуациях 89 KB
  Выбрав для своего  реферата эту тему, я ставила  перед собой цель создать, прежде всего, для себя, нечто, вроде самоучителя, справочника, настольного пособия для жизни в современном российском обществе. Очень часто в сложных и порой самых ...
3005. Общественный продукт. ВНП, способы его измерения. Система национальных счетов 84 KB
  Общественный продукт Совокупность различных видов производств в их взаимосвязи и взаимозависимости образуют национальную экономику. Результатом ее функционирования является совокупный продукт для измерения, которого используется система национ...
3006. Двигатели трехфазные асинхронные напряжением свыше 1000 В для механизмов собственных нужд тепловых электростанций 84 KB
  Настоящий стандарт распространяется на двигатели трехфазные асинхронные (далее — двигатели) с короткозамкнутым ротором, мощностью 200 кВт и более, напряжением 1000 В и выше, частотой 50 и 60 Гц, односкоростные и двухскоростные, предназначенные...
3007. Основы объектно-ориентированного проектирования 238.5 KB
  Цель курса – освоение принципов объектно-ориентированного проектирования и методов объектно-ориентированного программирования с использованием языка С++. Если на компьютере установлена ОС Windows – в курсе рассматриваются примеры п...
3008. Суть и процесс реформ Бальцеровича в Польше 114.5 KB
  Как делаются реформы После краха коммунизма перед экономистами большинства стран бывшего Советского Союза встали устрашающе трудные задачи. Им пришлось отказаться от единой системы цен - искаженных цен - которая господствовала при коммунизме, перейдя...
3009. Коммерческая тайна банков 101 KB
  Вопросы правового регулирования общественных отношений по поводу использования и распространения информации в целом и отдельных ее видов в частности в последнее время занимают одно из значительных мест в юридической литературе. Среди них, несомнен...
3010. Моделирование электропотенциального поля в проводящей среде 42.59 KB
  Используя экспериментальные данные, полученные при моделировании электропотенциального поля в проводящей среде, найти пересечения эквипотенциальных поверхностей Ui, соответствующих значениям U1 = 1,500 B, U2 = 0,160 B и U3 = 0.104 В, с осями х, у и ...
3011. Изучение типов потребителей по психографическому признаку 181.5 KB
  Любой рынок с точки зрения маркетинга состоит из покупателей, которые отличаются друг от друга по своим вкусам, желаниям, потребностям и, главное, приобретают товары исходя из разных мотиваций. Поэтому предприниматель должен понимать, что п...