13776

Методы решения неравенств, содержащих знак модуль

Лекция

Математика и математический анализ

Методы решения неравенств содержащих знак модуль. I Неравенства вида решаются следующим образом. Если то решений нет Если то Если то неравенству равносильна система II Неравенства вида решаются следующим образом. Если то решений нет Если то решени

Русский

2013-05-13

121 KB

8 чел.

Методы решения неравенств, содержащих знак модуль.


I
) Неравенства вида  решаются следующим образом.

Если , то решений нет

Если , то

Если , то неравенству  равносильна система

II) Неравенства вида  решаются следующим образом.

Если , то решений нет

Если , то решений нет

Если , то неравенству  равносильна система

III) Неравенства вида  решаются следующим образом.

Если , то неравенство верно для любых х из области определения

Если , то неравенство верно для любых х из области определения

Если , то неравенству  равносильна совокупность

IV) Неравенства вида  решаются следующим образом.

Если , то неравенство верно для любых х из области определения

Если , то неравенству  равносильна система

Если , то неравенству  равносильна система

V) Неравенства вида  решаются следующим образом.

Если , то решений нет.

Если , то решений нет.

Если , то неравенству  равносильна система

VI) Неравенства вида  решаются следующим образом.

Если , то решений нет.

Если , то неравенству  соответствует уравнение

Если , то неравенству  равносильна система

VII) Неравенства вида  решаются следующим образом.

Если , то неравенство  верно для любых значений x из области определения неравенства

Если , то неравенству  равносильна система

Если , то неравенству  равносильна совокупность

VIII) Неравенства вида  решаются следующим образом.

Если , то неравенство  верно для любых значений x из области определения неравенства

Если , то неравенство  верно для любых значений x из области определения неравенства

Если , то неравенству  равносильна совокупность

IX) Неравенства вида  и  решаются следующим образом.

Неравенству  соответствует неравенство  (либо общий способ)

Неравенству  соответствует неравенство  (либо общий способ)

X) Решение неравенств используя определение модуля (общий способ).

P.S

Любое неравенство можно решит общим способом.


 

А также другие работы, которые могут Вас заинтересовать

66831. Молекулярна фізика. Основні формули 1.02 MB
  Сили поверхневого натягу діють на внутрішню та зовнішню поверхні трубки. Враховуючи невелику товщину стінок трубки, можна вважати радіуси кривини поверхонь рідини біля стінок капіляра однаковими за величиною всередині та ззовні трубки.
66832. ЕЛЕКТРИКА І МАГНЕТИЗМ 357.5 KB
  Змістом контрольних робіт є розв'язування певної кількості відповідних задач. Вміння розв'язувати задачі є одним з головних критеріїв оволодіння фізикою. І саме розв'язування задач викликає найбільші труднощі у студентів.
66833. Електромагнетизм. Магнітне поле електричного струму 1.27 MB
  Закон Біо-Савара-Лапласа в скалярному і векторному вигляді відповідно: де dB – магнітна індукція поля, яке створюється елементом провідника з струмом; - магнітна проникність; - магнітна постійна, яка дорівнює 410-7 Гн/м ; - вектор, який дорівнює довжині dl провідника і співпадає з напрямом струму...
66834. ХВИЛЬОВА І КВАНТОВА ОПТИКА, ФІЗИКА АТОМА, ОСНОВИ КВАНТОВОЇ МЕХАНІКИ, ФІЗИКА АТОМНОГО ЯДРА 351.5 KB
  Матеріал розділів поділено на параграфи. На початку кожного з них подано короткий перелік формул і законів, які стосуються розв'язування задач певної теми. Ці формули дозволяють студентові скласти уявлення про обсяг теоретичного матеріалу, який необхідно опрацювати...
66835. ОСНОВИ КВАНТОВОЇ МЕХАНІКИ. ЯДЕРНА ФІЗИКА 490 KB
  Атом водню за теорією Бора Основні формули Момент імпульсу електрона на стаціонарних орбітах: L = m vn rn = nħ n = 123.1 де m маса електрона rn радіус орбіти vn швидкість електрона на орбіті n головне квантове число ħ постійна Дірака: ħ= h 2 де h постійна Планка. Енергія електрона що знаходиться на nй орбіті...