14324

ДОСЛІДЖЕННЯ ЗАЛЕЖНОСТІ ОПОРУ НАПІВПРОВІДНИКІВ ВІД ТЕМПЕРАТУРИ

Лабораторная работа

Физика

ЛАБОРАТОРНА РОБОТА № 9 ДОСЛІДЖЕННЯ ЗАЛЕЖНОСТІ ОПОРУ НАПІВПРОВІДНИКІВ ВІД ТЕМПЕРАТУРИ Мета роботи: Дослідним шляхом встановити закон зміни опору напівпровідника при його нагріванні визначити ширину забороненої зони і концентрацію зарядів у напівпровідник

Украинкский

2013-06-03

107.5 KB

53 чел.

ЛАБОРАТОРНА РОБОТА № 9

ДОСЛІДЖЕННЯ ЗАЛЕЖНОСТІ ОПОРУ НАПІВПРОВІДНИКІВ ВІД  ТЕМПЕРАТУРИ

Мета роботи:

Дослідним шляхом встановити закон зміни опору напівпровідника при його нагріванні визначити ширину забороненої зони і концентрацію зарядів у напівпровіднику при різній температурі.

Прилади та матеріали: 

Експериментальна  установка, яка   має   досліджуваний  термоопір, термостат   з нагрівачем   і   стабілізатор   струму.   Джерело   постійної  напруги(U=16В).    Міліамперметр    постійного струму    (Імах=200мА). Цифровий вольтметр або мультіметр для вимірювання постійної напруги

(Umax=20B).

Короткі теоретичні відомості:

Напівпровідники - це речовини, які за своєю електропровідністю, мають проміжне місце між провідниками першого роду і діелектриками. На відміну від металів вони мають від'ємний температурний коефіцієнт опору (в певних температурних інтервалах).

Основною відмінністю напівпровідників від металів є значна залежність їх провідності  (опору) від зовнішніх факторів (освітленість, механічні деформації, опромінення рентгенівськими та радіоактивними променями, дія магнітного поля тощо). На величину електропровідності напівпровідників суттєво впливає наявність домішок. Величина питомого опору напівпровідників лежить в межах від   10 -5 до 10 -8  Ом-м.

До напівпровідників належать деякі хімічні елементи (кремній, германій, селен, бор, телур ), а також окиси ( CuO ), сульфіди (CdS, PbS, ZnS), телуриди ( HgTe, CdTe ), фосфіди (GaP, InP, ZnP2 ) тощо.

Існують напівпровідники із електронною та дірковою провідністю. У напівпровідниковій техніці використовуються напівпровідники, в яких носіями, заряду є електрони хімічного зв'язку ( вірніше їх відсутність вони мають р-тип провідності і електрони провідності (n-типу ).

Приклади, дія яких ґрунтується на значній залежності опору напівпровідників    від     температури,     називаються термісторами  або термоопорами.

Термістори - об'ємні опори, що виготовляють з напівпровідникових матеріалів. Вони мають від'ємний коефіцієнт опору, який у багато разів перевищує температурний коефіцієнт опору металів. Термістори можуть бути найрізноманітніших розмірів і форми, а також мають різні термічні та електричні властивості, високу механічну міцність.

Залежність опору напівпровідників від температури у значних інтервалах описується виразом:

,     (1)

де: А - константа, К - стала Больцмана, Е - енергія активації (висота енергетичного бар'єру ). Під енергією активації розуміють енергію, яку необхідно затратити, щоб перевести електрон із зв'язаного стану у вільний.

Зменшення опору з ростом температури пояснюється тим, що при збільшені температури збільшується число носіїв заряду, тобто збільшується концентрація вільних електронів. Графік залежності опору напівпровідників від температури в координатах Ln R = f(1/T) являє собою пряму лінію, тангенс нахилу якої до осі 1/Т (вісь Ох ) дорівнює:

 (2)

Звідси енергія активації визначається як Е = 2k tgφ (3)

Концентрація електронів в зоні провідності напівпровідника змінюється від температури по експотенціальному закону

, (4)

де n-концентрація електронів провідності при температурі Т,

nо-концентрація електронів провідності при Т→∞

k = І,38 • 10 -23 дж/k- постійна Больцмана

ΔЕ- ширина забороненої зони

Так   як   електропровідність   пропорційна   концентрації   електронів провідності, то залежність питомої електропровідності γо напівпровідників від температури виражається формулою

 (5)

де γо - питома електропровідність при Т→∞

Опір напівпровідника з підвищенням температури зменшується по закону

(6)

де Rо-oпіp при Т→∞

Цю залежність можна використовувати для визначення ширини зони напівпровідника  ΔЕ.

Прологарифмувати цей вираз по основі е, отримаємо

Ln R = Ln Ro + E/2kT      (7) 

Виразимо k  в електрон-вольтах     (1еВ =1,6 • 10 -19 дж) 

K=0,86•10-4еВ/К

Знайдемо значення 1/2k;  1/2k=5,8•10-3К/еВ і підставимо його в (4);

(8)

Якщо побудувати графік залежності  Ln R = f(5,8·10 3 / T), то він буде представляти собою пряму лінію. Тангенс кута нахилу якої до вісі абсцис рівний ширині зображеної зони ΔЕ, вираженою в електрон-вольтах:

Схема експериментальної установки

Германієвий напівпровідник ВК поміщений в термостат з нагрівачем ЕК, який підключається до джерела живлення вимикачем SА1.

Величина струму в колі ВК піддержується незмінним стабілізатором при зміні опору ВК, визваних його нагріванням, стабілізатор струму складається із стабілізатора VD), транзистора VТ, транзисторів R1 і R2.

Для підключення цифрового вольтметра є клеми.

Порядок виконання роботяг:

1). Підключити до експериментальної  установки  (мал.2)   цифровий вольтметр (Umах=20В).

2) Увімкнути живлення тумблером SA1: Значення початкової температури і напруги на термоопорі ВК занести до таб.1.

Сила струму у колі постійна І = 16·10-3 мА.

Таблиця №1

t, оС

25

30

35

40

45

50

55

60

65

70

U1, В

U2, В

Uср.  В

R, Ом

3)Визначити і занести до таб.1 значення падіння напруги U1 і U2 на термоопорі при зміні температури через кожні 5 °С. Провести виміри U як при нагріванні термоопору (U1), так і при його охолодженні (U2).

Обробка результатів:

1. По даним таб.1   визначити  середнє значення  падіння  напруги  Uср = (U1 + U2)/2 на термопарі і його опір   R = Uср / I для всіх значень температури.

Результати занести до таб. 1.

2. Визначити значення   5,8·103 / Т і Ln R для   всіх температур. Результати занести до табл. 2.

Таблиця № 2

Т,k

LnR

По даним   табл.2  побудувати  графік залежності  Ln R = f(5.8·10-3 / T)

3. Враховуючи відношення, визначити концентрацію електронів провідності при температурі 700 С із формули:     R1 / R2 = n1 / n2  , де

n1 =2,4·10 23   м -3  - концентрація електронів провідності при температурі Т1 = 300 К,

n2 - при, температурі Т2 = 343 К (70° С), значення R1 і R2 взяти з таб. 1.

4. Знайти відносну і абсолютну похибку концентрації електронів n 2, враховуючи, що відносна похибка концентрації n1, складає 10%.

Контрольні питання

  1.  Які речовини належать до напівпровідників ?

Як пояснити електричні властивості напівпровідників?

  1.  Які типи провідності є у напівпровідниках ?
  2.  Як впливають домішки на електропровідність напівпровідників ?
  3.  Як виникає діркова та  електрона домішкова  провідність напівпровідників ?
  4.  Що є найбільш характерним для провідності напівпровідників?
  5.  Що називається енергією, активації ?
  6.  Що таке терморезистори і яке їх застосування ?


 

А также другие работы, которые могут Вас заинтересовать

19391. РАЗРАБОТКА ФИЗИЧЕСКОЙ ОРГАНИЗАЦИИ БАЗЫ ДАННЫХ: ФОРМИРОВАНИЕ ЗАПРОСОВ 3.82 MB
  БАЗЫ ДАННЫХ Лабораторная работа № 3 РАЗРАБОТКА ФИЗИЧЕСКОЙ ОРГАНИЗАЦИИ БАЗЫ ДАННЫХ: ФОРМИРОВАНИЕ ЗАПРОСОВ ЦЕЛЬ РАБОТЫ Изучение средств автоматизации формирования запросов в СУБД MS Access. Отработка методов конструирования запросов форм представления запросов и и
19392. ИСПОЛЬЗОВАНИЕ МАКРОСОВ ДЛЯ СОЗДАНИЯ ПРИЛОЖЕНИЙ ПОЛЬЗОВАТЕЛЯ В ACCESS 1.47 MB
  БАЗЫ ДАННЫХ Лабораторная работа № 4 ИСПОЛЬЗОВАНИЕ МАКРОСОВ ДЛЯ СОЗДАНИЯ ПРИЛОЖЕНИЙ ПОЛЬЗОВАТЕЛЯ В ACCESS ЦЕЛЬ РАБОТЫ Получить навыки использования макросов в СУБД Access для решения различных задач. ВЫПОЛНЕНИЕ РАБОТЫ 1. Введём условные данные в табличной форме в Excel
19393. ПОСТРОЕНИЕ ЗАПРОСОВ В ACCESS С ПОМОЩЬЮ SQL 1.76 MB
  БАЗЫ ДАННЫХ Лабораторная работа № 5 ПОСТРОЕНИЕ ЗАПРОСОВ В ACCESS С ПОМОЩЬЮ SQL ЦЕЛЬ РАБОТЫ Получить навыки использования SQLзапросов в СУБД Access для решения различных задач. ВЫПОЛНЕНИЕ РАБОТЫ 1.Создание таблицы Справочник заболеваний 2. Открываем конструктор создан
19394. РАЗРАБОТКА ИНТЕРФЕЙСА ПРИКЛАДНЫХ ПРОГРАММ С БАЗАМИ ДАННЫХ НА ОСНОВЕ ТЕХНОЛОГИИ ADO 655.5 KB
  БАЗЫ ДАННЫХ Лабораторная работа № 6 РАЗРАБОТКА ИНТЕРФЕЙСА ПРИКЛАДНЫХ ПРОГРАММ С БАЗАМИ ДАННЫХ НА ОСНОВЕ ТЕХНОЛОГИИ ADO Цель работы.Получить навыки интеграции различных баз данных с приложениями разработанным в среде IDE Delphi. Ход работы. 1. В форму Form1 д
19395. ГІСТАРЫЧНЫЯ ЭТАПЫ ФАРМІРАВАННЯ І РАЗВІЦЦЯ БЕЛАРУСКАЙ МОВЫ 91.5 KB
  1. ГІСТАРЫЧНЫЯ ЭТАПЫ ФАРМІРАВАННЯ І РАЗВІЦЦЯ БЕЛАРУСКАЙ МОВЫ 1.1. БЕЛАРУСКАЯ МОВА СЯРОД ІНШЫХ СЛАВЯНСКІХ МОЎ Усе вялікія і малыя асаблівасці жыцця нашага народа прыродныя ўмовы і геаграфія краіны узровень народнай гаспадаркі кантакты з іншымі народамі характар гра...
19396. Праблемы беларуска-рускай інтэрференцыі 76.5 KB
  Лекцыя№2 Праблемы беларускарускай інтэрференцыі. 2.1. СУТНАСЦЬ І АСАБЛІВАСЦІ БІЛІНГВІЗМУ Праблема моўнага жыцця ў нашай рэспубліцы сёння адносіцца да адной з найбольш актуальных і складаных. Разам з тым гэта праблема існуе не толькі ў нашай краіне але і ў гісторыі су...
19397. Лексічны склад навуковага стылю 68.5 KB
  Лекцыя №4. Лексічны склад навуковага стылю. ТЭРМІНАЛАГІЧНАЯ ЛЕКСІКА Хуткасны прагрэс навукі і тэхнікі прыводзіць да ўзнікнення новых аб’ектаў паняццяў з’яў што непасрэдным чынам знаходзіць сваё адлюстраванне ва ўзбагачэнні спецыяльнай лексікі новымі лексічнымі а
19398. НАВУКОВЫ ТЭКСТ: СТРУКТУРА І МОЎНАЕ АФАРМЛЕННЕ 69 KB
  ЛЕКЦЫЯ №5. НАВУКОВЫ ТЭКСТ: СТРУКТУРА І МОЎНАЕ АФАРМЛЕННЕ С.2. Моўны стыль грэч. ŝtylos – прылада для пісьма ў старажытных грэкаў – разнавіднасць літаратурнай мовы сукупнасць моўных сродкаў ужыванне якіх залежыць ад мэт і зместу выказвання. С.3 У беларускай мове вылучаю...
19399. Сістэма жанраў навуковай літаратуры 71 KB
  Лекцыя №6. Сістэма жанраў навуковай літаратуры Для студэнта любой ВНУ навуковая мова з’яўляецца не толькі сродкам авалодання пэўнай інфармацыяй але і сродкам яе рэалізацыі ў канкрэтных відах вучэбнай дзейнасці: пры напісанні кантрольных і курсавых работ у дакладах і