14338

Швартовное устройство судна. Экспериментальная оценка формулы Эйлера

Лабораторная работа

Физика

Лабораторная работа №1 Тема: Швартовное устройство судна. Экспериментальная оценка формулы Эйлера. Цель работы: ознакомление с характеристиками и физическим явлением используемом в швартовном устройстве. Задача: определить коэффициент трения f между канатом...

Русский

2013-06-03

542.5 KB

7 чел.

Лабораторная работа №1

Тема: Швартовное устройство судна. Экспериментальная оценка формулы Эйлера.

Цель работы: ознакомление с характеристиками и физическим явлением используемом в швартовном устройстве.

Задача: определить коэффициент трения f между канатом (швартовым) и круговым металлическим цилиндром (кнехтом) и взаимосвязь силы трения с параметрами швартовного устройства (диаметром кнехта d, углом  охвата кнехта швартовым канатом α, материала элементов в зоне контакта).

Краткая теория:

 Одним из основных конструктивных элементов швартовного устройства является швартов - гибкая нить в виде растительного, синтетического или стального каната (троса), сплетенного из отдельных элементов (кáболок и прядей). Швартов является основным элементом для крепления судна к береговым сооружениям (причалу, пирсу) или таким же судам в море.

С помощью петли (όгона) на одном из концов (подаваемого на берег) швартов крепится на береговом вертикальном металлическом цилиндре (кнехте). Вторым концом (остающимся на судне) швартов крепится безузловым способом на судовом кнехте (представляющим собой вертикально стоящий одиночный или спаренный металлический цилиндр).

Основное преимущество безузлового крепления швартова перед узловым и другими способами состоит в том, что он дает возможность наиболее быстрого крепления и мгновенной отдачи (или ослабления) швартова при экстренных ситуациях. За счет силы трения между канатом и кнехтом минимальным усилием Т2 после кнехта и удерживается максимальное усилие сопротивления судна Т1, создаваемое им до кнехта.

При этом, чем больше угол охвата α и чем больше витков n охвата швартовым кнехта, тем усилие трения больше и тем меньшее усилие требуется для удержания судна у причала.

Соотношение усилия Т2 , удерживающего судно  и силы Т1 сопротивления судна подчиняется зависимости, описываемой формулой Эйлера:

Т2 = Т1е-fn,      

где    -   угол охвата кнехта швартовым,

f  -   коэффициент трения скольжения швартова о кнехт .

Т1 – усилие сопротивления швартуемого судна, (усилие до кнехта),

Т2 –  усилие, удерживающее судно, (усилие после кнехта);

n  –  количество витков охвата кнехта швартовым.

Ход работы:

Оборудование:

1)металлические цилиндры, трех различных диаметров d1, d2, d3, моделирующие кнехты;

2)струбцины для закрепления цилиндров на рабочем столе;

3)канаты пеньковый и капроновый различной толщины, моделирующие швартовы;

4)грузы Т1  весом 3, 5 и 8 кг, моделирующие силу сопротивления швартуемого судна;

5)динамометр со стрелочным индикатором типа ДПУ 002-2.

Т2 – усилие, моделирующее усилие удержания судна, фиксируемое на шкале динамометра 5.

Рис.1

                                          Т2                       

 

              

                                                                             Т2                

  

         т2     

             90о                           135о                                  180о

Рис.2

Техника выполнения работы

Синтетические и пеньковые канаты 3 поочередно заводятся на цилиндрические поверхности 1 диаметров d1, d2, d3, так, как это показано на рис.1. С одной стороны каната следует подвесить грузы Т1, сначала 3 кг, затем 5 кг и наконец  8 кг, а с другой стороны каната необходимо закрепить динамометр 5.

 Поскольку коэффициенты трения следует определять при нескольких значениях угла охвата канатом кругового цилиндра, то конец каната, к которому присоединен динамометр, нужно располагать так, как показано на рис.2 (90о,  135о и 180о ).

В процессе выполнения работы необходимо подтянуть груз Т1 до верхнего положения так, чтобы он подходил непосредственно к цилиндру. Плавно опуская конец каната с динамометром, следует фиксировать значения усилия Т2, показываемого динамометром. Показания динамометра проконтролировать шестикратно (№ измерения = 1-6) на каждом  из цилиндров с углами охвата цилиндров 90о, 135о и 180о. Значения усилий, фиксируемых на динамометре, заносятся в табл.1.1. Всего таблиц должно быть три:  при 90о ,  при 135о и при 180о, а также для каждого типа каната (для пенькового и для капронового).

Коэффициент трения определяется исходя из формулы Эйлера:

Т2 = Т1е-fn,     ( 1 )

где - угол охвата цилиндра (кнехта) канатом, подставляется в радианах,

f- коэффициент трения скольжения швартова (каната) о кнехт (цилиндр);

Т1 – усилие, создаваемое подвешенным грузом, (моделирующего силу сопротивления швартуемого судна, усилие до кнехта);

Т2 – усилие, фиксируемое на шкале динамометра (моделирующее усилие натяжения, удерживающее судно, усилие после кнехта);

n – количество витков охвата кнехта швартовым. В работе принято n=1.

Окончательное выражение для определения коэффициента трения f имеет вид:

f =  .     ( 2 )

 

 

α1 = 900 (π/2 рад)    Таблица 1.1

Т1 кг

Материал цилиндра (кнехта)

Измеряемые и вычисляемые величины

№ измерения

Канат синтетический

Канат растительный

Диаметр цилиндра (кнета)

Диаметр цилиндра (кнехта)

d1

Среднее значение

d2

Среднее значение

d3

Среднее значение

d1

Среднее значение

d2

Среднее значение

d3

Среднее значение

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

3

Алюминиевый сплав

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Сталь

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

5

Алюминиевый сплав

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Сталь

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Продолжение таблицы 1.1

8

Алюминиевый сплав

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Сталь

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Обработка результатов эксперимента:

  1.  Обработка данных замеров Т2, кг, а также вычисленные значения f  по формуле (2) для соответствующих значений  α и Т2 заносятся в соответствующие графы таблицы 1.1;
  2.  f =  

α1 = 1350 (3π/4 рад)    Таблица 1.2

Т1 кг

Материал цилиндра (кнехта)

Измеряемые и вычисляемые величины

№ измерения

Канат синтетический

Канат растительный

Диаметр цилиндра (кнета)

Диаметр цилиндра (кнехта)

d1

Среднее значение

d2

Среднее значение

d3

Среднее значение

d1

Среднее значение

d2

Среднее значение

d3

Среднее значение

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

3

Алюминиевый сплав

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Сталь

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

5

Алюминиевый сплав

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Сталь

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Продолжение таблицы 1.2

8

Алюминиевый сплав

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Сталь

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Обработка результатов эксперимента:

  1.  Обработка данных замеров Т2, кг, а также вычисленные значения f  по формуле (2) для соответствующих значений  α и Т2 заносятся в соответствующие графы таблицы 1.2;

2. f =  

 

α1 = 1800 (π рад)    Таблица 1.3

Т1 кг

Материал цилиндра (кнехта)

Измеряемые и вычисляемые величины

№ измерения

Канат синтетический

Канат растительный

Диаметр цилиндра (кнета)

Диаметр цилиндра (кнехта)

d1

Среднее значение

d2

Среднее значение

d3

Среднее значение

d1

Среднее значение

d2

Среднее значение

d3

Среднее значение

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

3

Алюминиевый сплав

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Сталь

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

5

Алюминиевый сплав

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Сталь

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Продолжение таблицы 1.3

8

Алюминиевый сплав

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Сталь

Т2 , кг (замер)

1

2

3

4

5

6

f

1

2

3

4

5

6

Обработка результатов эксперимента:

  1.  Обработка данных замеров Т2, кг, а также вычисленные значения f  по формуле (2) для соответствующих значений  α и Т2 заносятся в соответствующие графы таблицы 1.3;

2. f =  

Сравнить полученные экспериментальные значения коэффициентов трения f(э) с теоретическим f(т):

Теоретическое значение коэффициента трения f(т)

Таблица 1.4

Материал

Швартов

Кнехт

Сталь

Алюминий

Растительный

0,02 – 0,03

0,03 – 0,04

Синтетический

0,01 – 0,02

0,02 – 0,03

Погрешность эксперимента:       f =      < [3%].

Выводы:

От чего зависит коэффициент трения  f швартова о кнехт?

1) от диаметра кнехта dкнхт;

2) от диаметра швартова dшварт;

3) от материала кнехта (сталь, алюминий);

4) от материала швартова (растительный, синтетический);

5) от угла α охвата кнехта швартовым;

6) от количества витков n охвата швартовым кнехта.

Литература:

1. Зайцев В.В. и др. Проектирование общесудовых устройств. Николаев . ИЛИОН . 2004 -270с.

2. Александров М.Н. и др. Судовые устройства. Справочник. Ленинград . Судостроение. 1987 -656с.

Работу выполнил(а):

Студент(ка) группы___________

_______________________________________

Фамилия, имя, отчество

«___»_________200    г.


 

А также другие работы, которые могут Вас заинтересовать

14987. ТАРАЗ - ҚАЗАҚ МӘДЕНИЕТIНIҢ АЛТЫН БЕСIГI 37 KB
  ТАРАЗ ҚАЗАҚ МӘДЕНИЕТIНIҢ АЛТЫН БЕСIГI Кәнкиев Ә.Ш. Жүншеев Р.Е. Тараз қ. М.Х.Дулати атындағы ТарМУ Ежелгi Тараз Ұлы Жiбек жолын жалғап жататын турақты дипломатикалық және саудасаттык қарымқатынас жасалатың күре тамыры iспеттес. Бұл байланыс көпiрiнiң маңызы дүние
14988. Тараздың көне моншалары 37.5 KB
  Тараздың көне моншалары. Көне деректерге сүйенетін болсақ Тараз қаласы Талас өңіріндегі саяси мәдениеттің ірі орталығы болған республикадағы ежелгі қалалардың бірі. Онда көптеген елдің көпестері мемлекетаралық іспен шұғылданған елшілер әртүрлі діни ағымды тарат
14989. Түркістан аймағындағы Сығанақ қаласының тарихы 35.5 KB
  ТҮРКІСТАН АЙМАҒЫНДАҒЫ СЫҒАНАҚ ҚАЛАСЫНЫҢ ТАРИХЫ Сыр бойындағы ірі қалалардың бірі Сығанақ болды. Ол қазіргі Қызылорда облысының Жаңақорған ауданындағы қала еді. Бұл қала туралы алғаш рет Х ғасырдағы жазба деректерде айтылған. XI ғ. Ғұлама ғалым түркі тілінің маманы Ма
14990. ҮСТІРТ КЕРУЕН ЖОЛЫНДАҒЫ САМ ҚАЛАСЫ 66.5 KB
  ҮСТІРТ КЕРУЕН ЖОЛЫНДАҒЫ САМ ҚАЛАСЫ Тарихтың атасы атанған Геродот бiздiң дәуiрiмiзге дейiнгi мыңжылдықтың орта шенiнде Қара теңiз маңынан Дон жағалауына одан Оңтүстiк Оралдағы савроматтар жерi арқылы Ертiс бойы мен Алтайға Зайсан көлiне дейiн барған далалық сақ жолының
14991. Ұлы даланың астаналары 52.5 KB
  Ұлы даланың астаналары Дидарыңда Мәңгіліктің мұңы ұйыған Ұлы Дала... Керуендеп көшкен тұтас дәуірлер ол үшін қасқағымдық мезет қана. Қатпарлы тау аңырған оқшау төбелермен толқындап шексіздікке маңған ұлан жазық алапат кеңістік мұхитының шежіреестелігі де біртүрлі...
14992. Мұражай тәрбие өзегі 67.5 KB
  Мұражай тәрбие өзегі Ақселеу Сланұлы Сейдімбеков бұрыны Жезқазған қазіргі Қарағанды облысы Жаңаарқа ауданына қарасты Дружба совхозына 1942 жылы дүниеге келген. 1962 жылдан 1968 жылға дейін Киров атындағы Қазақ мемлекеттік университетінде оқып журналистика факульте...
14993. Шу өңірінің тарихын білеміз бе 58 KB
  Шу өңірінің тарихын білеміз бе Біздің білетініміз Шу тарихын зерттеп жүрген екі ғалым бар. Бірі тарих ғылымдарының докторы профессор Қожа Ахмет Ясауи атындағы Халықаралық қазақтүрік университетінің құрметті профессоры Әбу Насыр ӘлФараби атындағы Қазақ ұл...
14994. Web-бет дизайны, HTML 504 KB
  Webбет дизайны HTML Кіріспе Қазақстан Республикасының білім беру жүйесін ақпараттандыру еліміздің даму стратегиясының негізгі бағыттарының бірі себебі ХХІ ғасыр білім беру жүйесін ақпараттандыру ғасыры. Информатика пәнінің орта білім беру жүйесіндегі ролі ...
14995. Интернет жүйесі 622.5 KB
  Интернет жүйесі Интернет туралы ұғым. Жиырмасыншы ғасырдың аяғында пайда болған Интернет қазір жер шарының әр түкпірін байланыстырып сан алуан адамдарды елдер мен құрылқтарды біріктіріп отыр. Интернет 1960 жылдары АҚШта дүниеге келдi.Оны соғыс бола қалған жағ...