14373

Определение удельной теплоты плавления льда и изменения энтропии в процессе плавления

Лабораторная работа

Физика

Лабораторная работа №15 по дисциплине Физика на тему: Определение удельной теплоты плавления льда и изменения энтропии в процессе плавления. 1. Цели и задачи: определение калориметрическим методом удельной теплоты фазового перехода λ и расчет изменения эн

Русский

2013-06-04

86.5 KB

308 чел.

Лабораторная работа №15

по дисциплине «Физика»

на тему: «Определение удельной теплоты плавления льда и изменения энтропии в процессе плавления».

1. Цели и задачи: определение калориметрическим методом удельной теплоты фазового перехода λ и расчет изменения энтропии тела в этом процессе, также нужно рассчитать средние квадратичные погрешности величин удельной теплоты плавления льда и изменения энтропии процесса, построить график зависимости температуры воды в калориметре от времени.

2. Приборы и материалы: калориметр с мешалкой, весы, электронный термометр, секундомер.

3.Используемые формулы: удельная теплота плавления льда рассчитывается из уравнения теплового баланса (с учетом теплообмена с окружающей средой).

а)    где m1 - масса куска льда, m2 - масса воды в калориметре до опыта, m3 – масса калориметра (mк) и мешалки (mм); с=0,092 кал/(г•град) – теплоемкость латуни, из которой сделаны калориметр и мешалка, с1=1 кал/(г•град) – теплоемкость воды

б) Полное изменение энтропии льда в процессе его плавления и нагревания будет равно

 где T  - температура воды после опыта

в) Погрешность окончательного результата вычисляется по формуле

г) Средняя квадратичная погрешность изменения энтропии определяется по формуле

4.Порядок выполнения работы:  

1. Взвешиваем внутренний стакан калориметра и определяем его массу, mк = 348,61 г

2. Наполняем внутренний сосуд калориметра на 2/3 водой, температура которой приблизительно на 10С выше комнатной. Взвешиваем сосуд еще раз, определяя тем самым массу воды m2 = 794,4г - 348,61г = 445,79г.

3. Собираем калориметрическую установку, вставляем внутренний стакан во внешний и помещаем термометр в воду для определения температуры её во время опыта.

4. Берем кусок льда, масса которого m1 = 133,35г – 45,33г = 88,02г.

5. Тщательно перемешиваем воду, записываем в таблицу показания термометра через 1-2 минуты.

6. Ждем, пока температура воды в калориметре понизится примерно на 1-2 градуса до температуры . Опускаем в калориметр, заранее приготовленный и высушенный фильтровальной бумагой кусок льда.

7. Продолжаем перемешивать воду в калориметре, измеряя в нем температуру через 15 секунд до тех пор, пока не окончится процесс плавления льда, что соответствует минимальной температуре в калориметре.

8. Затем отмечаем через 1-2 минуты повышение температуры воды, пока она не повысится на 1,0-1,5 градуса выше температуры .

9. Взвешиваем внутренний сосуд калориметра в третий раз, чтобы определить точную массу льда m1 = 875,91г – 348,61г - 445,79г = 81,51г.

Результаты измерений температур представлены в таблице:

Время t, с

Температура, tºC

15

30,2

30

28,0

45

26,4

60

24,7

75

23,5

90

22,3

105

21,5

120

20,8

135

20,2

150

19,2

165

18,4

180

17,9

195

17,4

210

17,2

225

16,9

240

16,7

255

16,6

270

=16,5

 

Нагревание системы после того, как весь лед растаял:

Время t, мин

Температура, tºC

7

16,6

9

16,7

10

16,9

12

17,0

13

17,1

17

17,2

22

17,3

26

17,4

28

17,5

 

 tкомн. = 24С

               tводы = 34С (до опыта)

 tводы = 33С (перед добавлением льда) =

Строим график зависимости измерения температуры воды в калориметре от времени опыта. Учет теплообмена с окружающей средой проводим экстраполяцией отрезков AB и EF, получая исправленные значения температур  и , которые получились бы при бесконечно быстром процессе плавления льда. Естественно, что значения  и  будут несколько ниже значений  и .

6. Ответ: удельная теплота плавления льда λ =(307,2 ± 23,7) кДж/кг

                  изменение энтропии тела в процессе = (111,6 ± 5,7) Дж/К

7. Вывод: по полученным в ходе эксперимента данным были рассчитаны значения удельной теплоты плавления льда и изменения энтропии тела в ходе процесса, относительная погрешность которых составляет 7,7% и 5,1% соответственно.


 

А также другие работы, которые могут Вас заинтересовать

42279. Настройка статических маршрутов 58.5 KB
  Щелкните ПК офиса филиала BOpc и перейдите по ссылкам Desktop Commnd Prompt . Запишите IPадрес ПК офиса филиала BOpc и адрес шлюза по умолчанию. Адрес шлюза по умолчанию – это IPадрес интерфейса FstEthernet для Офиса филиала BrnchOffice.1 адрес шлюза по умолчанию для локальной сети Офиса филиала BrnchOffice в запросе команды в ПК офиса филиала BOpc.
42280. Исследование индуктивно-связанных цепей 288.5 KB
  Целью работы является экспериментальное определение параметров двух индуктивно связанных катушек и проверка основных соотношений индуктивно связанных цепей при различных соединениях катушек. Подготовка к работе Схема замещения двух индуктивно связанных катушек удовлетворительно учитывающая электромагнитные процессы в диапазоне низких и средних частот представлена на рис. 1 где L1 R1 и L2 R2 индуктивности и сопротивления соответственно первой и второй...
42281. ЗАКОНЫ СТОЛКНОВЕНИЙ 931 KB
  Обозначим массы шаров и скорости шаров до удара и а скорости после удара и рис. 5 Скорости шаров после удара получим умножив 5 на и вычтя результат из 3 а затем умножив 5 на и сложив результат с 3: . Рассмотрим неупругое столкновение двух шаров массами и скорости которых до удара и . Установка предназначена для измерения скорости двух подвижных...
42282. ОСНОВНОЕ УРАВНЕНИЕ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ВОКРУГ НЕПОДВИЖНОЙ ОСИ 981 KB
  Изучение динамики вращательного движения твердого тела. Исследование зависимости угла поворота твердого тела от времени, экспериментальная проверка основного уравнения динамики вращательного движения, определение момента инерции твердого тела как коэффициента пропорциональности в основном уравнении
42283. ИЗУЧЕНИЕ УПРУГИХ СВОЙСТВ ПРУЖИНЫ 2.68 MB
  Если пружина находится в равновесии то силы действующие на любую часть пружины уравновешены рис. По закону Гука сила упругости пропорциональна деформации пружины : 1 где проекция силы упругости на ось направленную вдоль оси пружины рис. Рис. Одной из упругих характеристик...
42284. ЦЕНТРОБЕЖНАЯ СИЛА 843 KB
  Исследование зависимости величины центробежной силы от массы тела угловой скорости и расстояния до оси вращения. Вместе с платформой вращается привязанная к оси вращения небольшая тележка. Рассмотрим небольшой груз массы m подобно тележке привязанный к оси вращения нерастяжимой невесомой нитью и вращающийся вместе с платформой.1 этот груз схематически изображён слева от оси вращения.
42285. ИЗУЧЕНИЕ КОЛЕБАНИЙ СВЯЗАННЫХ МАЯТНИКОВ 1.67 MB
  Измерение собственных частот колебаний и частоты биений экспериментальная проверка соотношения между этими частотами. Теоретическая часть Биения Гармоническими колебаниями называются колебания которые описываются формулой 1 где координата колеблющейся точки амплитуда колебаний циклическая частота период колебаний начальная фаза. Амплитуда колебаний и начальная фаза определяются начальными условиями:...
42286. ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТВЕРДОГО ТЕЛА И ПРОВЕРКА ТЕОРЕМЫ ШТЕЙНЕРА 1.78 MB
  Теоретическая часть Момент инерции это величина зависящая от распределения масс в теле и являющаяся мерой инертности тела при вращательном движении. Момент инерции тела относительно оси вращения определяется выражением 1 где элементарные точечные массы на...
42287. КОЛЕБАНИЯ СТРУНЫ 6.2 MB
  Исследование зависимости частоты колебаний струны от силы натяжения длины и линейной плотности материала струны. Оборудование: Установка включающая в себя устройство для натяжения струны с динамометром измерительную линейку с подвижными порожками электрическую лампочку с держателем фотоэлемент низкочастотный усилитель осциллограф и универсальный счетчик; резиновый молоток; набор струн. Колебания струны как пример стоячей волны На практике стоячие волны возникают при отражении волн от преград: падающая на преграду волна и бегущая ей...