14376

Дифракция света на бегущих ультразвуковых волнах

Лабораторная работа

Физика

Лабораторная работа по дисциплине Физика на тему: Дифракция света на бегущих ультразвуковых волнах.. Цели и задачи: определить скорость ультразвука в воде по дифракции света на бегущих волнах и рассчитать для воды. Приборы и...

Русский

2013-06-04

199 KB

3 чел.

Лабораторная работа № 72.2

по дисциплине «Физика»

на тему: «Дифракция света на бегущих ультразвуковых волнах».

1. Цели и задачи: определить скорость ультразвука в воде по дифракции света на бегущих волнах и рассчитать  ад,  из, Сv и   для воды.

2. Приборы и материалы: для определения скорости ультразвука в воде используется установка, общая схема которой представлена на рисунке:

В качестве источника света S используется ртутно-кварцевая лампа ПРК-4 с характерным для ртути линейчатым спектром.

Ширина щели G регулируется  микровинтом. Коллиматор формирует параллельный пучок лучей, падающий на кювету К, смонтированную на предметном столике. Источником ультразвука служат колебания пьезокварцевой пластинки, помещенной  между электродами ультразвукового генератора Г.  Одним из электродов служит слой фольги между кюветой и пьезокварцем, другим - латунный диск. Пластинка вместе с электродами плотно прижата ко дну кюветы. Для обеспечения хорошего акустического контакта дно кюветы, фольга и пьезокварц приклеены друг к другу слоем масла. Дифракционная решетка Р вставляется в специальный держатель на предметном столике. Регулировка оптической системы линз Л1, Л2 и Л3 осуществляется кремальерами Кр1, Кр2 и Кр3. Окуляр-микрометр Л3 позволяет измерить положение дифракционных полос с точностью до 0,01 мм. Генератор Г настроен на резонансную частоту пьезокварца, измеряемую цифровым частотомером Ч в килогерцах.

3. Используемые формулы:

1. = a•D;  

2. U = ;

3.

4. ;

   из /ад  = Cp/ CV     

4.Порядок выполнения работы:  

1. Включить ртутную лампу и дать ей прогреться несколько минут. Получить четкое изображение щели в поле зрения окуляр микрометра.

2. Включить генератор и частотомер и дать прогреться несколько минут. После этого в поле зрения окуляр-микрометра должна появиться дифракционная картина.

3. Измерить положение всех видимых линий дифракции Xk.

4. Измерить частоту генератора . Измерения следует проводить не ранее, чем через 15-20 минут после включения генератора и частотомера. Произвести 8-10 измерений через равные интервалы времени (например, через 10 секунд). Если одно из измеренных значений частоты более чем на 15% отличается от среднего, его отбрасывают.

5. Выключить генератор и частотомер и вставить в держатель дифракционную решетку. Значение постоянной D указано на решетке.

6. Измерить положение линий дифракции Yk для оптической дифракционной решетки.

Результаты измерений представлены в таблице:

Порядок k, цвет линии

0

1, с

1, з

1, ж

+1,с

+1,з

+1,ж

Xk, мм

4,68

3,59

3,30

3,21

5,72

6,05

6,14

Yk , мм

4,61

3,50

3,28

3,22

5,70

6,08

6,18

7. Построить график зависимости Yk = a Xk +b  и определить значение a (тангенса угла наклона графика зависимости Yk = a Xk +b к оси абсцисс).

К-во точек

7

1

2

3

4

5

6

7

Σ

Значение

x

4,68

3,59

3,3

3,21

5,72

6,05

6,14

Σxi =

20,5

y

4,61

3,5

3,28

3,22

5,7

6,08

6,18

Σyi =

20,31

x^2

21,9024

12,8881

10,89

10,3041

32,7184

36,6025

37,6996

Σxi^2 =

88,703

y^2

21,25210

12,25000

10,75840

10,36840

32,49000

36,96640

38,19240

Σyi^2 =

87,11890

x*y

21,5748

12,5650

10,8240

10,3362

32,6040

36,7840

37,9452

Σxi*yi =

87,9040

a

b

So^2

Sa^2

Sb^2

0,992

-0,00236

0,001338

4,67E-05

0,000591

 

 

So

Sa

Sb

0,03658

0,006832

0,02432

8. По методу наименьших квадратов вычислить a и a.

Δа = 2,4 • 0,006832 = 0,0163968

Коэффициент Стьюдента берем из таблицы для числа опытов n=7 и доверительной вероятности  p = 0,95. В этом случае он равен 2,4.

9. Вычислить значение  λ:

λ = 0,992•0,236•10-3 = 0,234112•10-3 м;   Δλ =0,0000039799 м (1,7%)


10. По измеренным значениям частоты вычислить  и  .

11. Вычислить скорость ультразвука в воде:

U = 1449,74 м/с, ΔU = 25,8 м/с (1,78%)

12. Вычислить ад:   ад = 4,776•10-10 м•с2/кг   (tº=20ºС, ρ = 996,2 кг/м3,

                                                                              Ср = 4181 Дж/кг•град)

13. из = 4,804•10-10 м•с2/кг, CV = 4156,63 Дж/кг•град, γ = 1,005863

6. Вывод: по полученным в ходе эксперимента данным были рассчитаны:

λ = (2,34±0,0398)•10-4м

U =(1449,7±25,8) м/с

ад = 4,776•10-10 м•с2/кг

из = 4,804•10-10 м•с2/кг

CV = 4156,63 Дж/кг•град

γ = 1,005863


 

А также другие работы, которые могут Вас заинтересовать

17414. Теоретические основы эстетического воспитания дошкольников 229.5 KB
  Проблема эстетического воспитания особенно остро стоит перед дошкольной педагогикой. Именно в дошкольном периоде формируются зачатки эстетических чувств и переживаний, закладывается основа ценностного отношения к окружающему миру. От того, что ляжет в основу эстетического восприятия мира, сформированного в дошкольном учреждении
17415. Одношаровий персептрон 128.5 KB
  5 5 Лабораторна робота №2 Одношаровий персептрон Мета: отримати навички розвязання практичних задач за допомогою одношарового персептрона. 1.1. Теоретичні відомості Модель перcептрона Модель персептрона має вигляд показаний на рис. 1.1. ...
17416. Нейронні мережі на основі радіальних базисних функцій 113.5 KB
  Лабораторна робота № 3 Нейронні мережі на основі радіальних базисних функцій Мета: отримати навички розвязання практичних задач за допомогою мереж на основі радіальних базисних функцій. 2.1. Теоретичні відомості Основні відомості Мережа на основі радіальних ба
17417. Мережі Кохонена 416.5 KB
  Лабораторна робота № 4 Мережі Кохонена Мета: отримати навички розвязання практичних задач за допомогою мереж Кохонена. 3.1. Теоретичні відомості Карти Кохонена що самоорганізуються це спеціальний клас штучних НМ робота яких базується на конкурентному принцип
17418. Асоціативна мережа Хопфілда 127 KB
  Лабораторна робота № 5 Асоціативна мережа Хопфілда Мета: отримати навички розвязання практичних задач за допомогою мереж Хопфілда. 4.1. Теоретичні відомості 4.1.1. Дискретна модель Хопфілда як асоціативна пам'ять Визначення. Асоціативна пам'ять система здатна в...
17419. Генетичні алгоритми 89.5 KB
  Лабораторна робота № 6 Генетичні алгоритми Мета: отримати навички розвязання практичних задач за допомогою генетичних алгоритмів. 5.1. Теоретичні відомості Генетичні алгоритми ГА Holland 19691990 спрощено моделюють процеси природної еволюції і засновані на стохасти
17420. Моделирование D-триггера 36.28 KB
  В данной лабораторной работы мы смоделировали синхронный D-триггер и исследовали его работу, результаты которой представили в табличном виде. На основе этого триггера мы смоделировали схему многоразрядного регистра
17421. Проектування реляційної бази даних 74 KB
  Лабораторна робота №3 Тема: Проектування реляційної бази даних Мета: Опис предметної сфери створення концептуальної та логічної моделі бази данихдалі БД Теоретичні відомості Основні етапи проектування БД: 1. Визначення мети створення бази даних. На першому ...
17422. Проектування бази даних в Access 281 KB
  Лабораторна робота №4 Тема: Проектування бази даних в Access Мета: Запроектувати в Microsoft Office Access базу даних і виконати звязки Потрібно створити БД призначену для працівників довідкової служби кінотеатрів міста. Така система повинна забезпечувати зберігання відом...