14627

ИЗУЧЕНИЕ ДЕЙСТВИЯ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ НА ВЕЩЕСТВО И ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ УЛЬТРАЗВУКА

Лабораторная работа

Физика

2 ЛАБОРАТОРНАЯ РАБОТА ИЗУЧЕНИЕ ДЕЙСТВИЯ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ НА ВЕЩЕСТВО И ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ УЛЬТРАЗВУКА ЦЕЛЬ РАБОТЫ: изучить свойства ультразвука его взаимодействие с веществом; ознакомиться с устройством и работой ультразву...

Русский

2013-06-08

54.5 KB

5 чел.

2

ЛАБОРАТОРНАЯ РАБОТА

«ИЗУЧЕНИЕ ДЕЙСТВИЯ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ НА ВЕЩЕСТВО И ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ УЛЬТРАЗВУКА»

ЦЕЛЬ РАБОТЫ: изучить свойства ультразвука, его взаимодействие с веществом; ознакомиться с устройством и работой ультразвукового генератора.

ОБОРУДОВАНИЕ: 1. Ультразвуковой генератор.

  1.  Фокусирующий сосуд и сосуд с плоскопараллельными стенками.
  2.  Осветитель.
  3.  Штатив.
  4.  Термометр с ценой деления 0,50С.
  5.  Крахмал.
  6.  Вазелин.

ТЕОРИЯ: Ультразвуком принято называть упругие колебания и волны, частоты которых превышают частоты, воспринимаемые ухом человека. Такое определение сложилось исторически и связано с субъективными ощущениями человека, поэтому не дает четкой нижней границы ультразвука (УЗ) – некоторые люди не могут слышать звуки с частотой 10 кГц, а есть люди, воспринимающие 25 кГц. Для внесения четкости в определении нижней границы ультразвука с 1983 г. Установлено считать ее равной 11, 12 кГц (ГОСТ 12.1.001-83). В медицинской литературе, однако, общепринято под УЗ понимать упругие колебания среды с частотой выше 20 кГц (верхняя граница частоты, воспринимаемая человеком с нормальным слухом).

Верхняя граница УЗ обусловлена физической природой волн, которые могут распространяться в среде лишь при условии, что длина волны больше средней длины свободного пробега молекул в газах (~ 10-6м) или межатомных расстояний в жидкостях и твердых телах (~ 10-10м). Поэтому в газах верхняя граница УЗ для λ = 10-6 м дает 109 Гц, в твердых телах – 1013 Гц. Упругие волны с частотами более 1 Г Гц называют гиперзвуком (см. рис.):

0______20_Гц__________20_кГц____________109Гц________1013Гц________

                                                                                                                            ν,Гц

инфразвук         слышимый ухом звук                        ультразвук                                           гиперзвук     

Для получения УЗ используют явления магнитострикции (0 - 200 кГц) и обратного пьезоэффекта ( 200 кГц – 50 МГц), а регистрация УЗ основана на явлении прямого пьезоэффекта.

 УЗ волны по своей природе не отличаются от волн слышимого диапазона или инфразвука, и распространение УЗ подчиняется законам, общим для всех акустических волн (законы отражения, преломления, рассеяния и  т.п.). К особенностям УЗ можно отнести то, что из-за малой длины волны УЗ распространяется узкими пучками (перенося при этом энергию), поэтому во многих случаях к УЗХ применяют законы геометрической оптики; другой его особенностью является зависимость скорости от физических свойств среды, что используют в диагностических целях.

ДЕЙСТВИЯ УЗ:

  •  Механическое: а) колебания давления, вызываемые УЗ, используют для микромассажа тканей; б)акустические течения, возникающие под воздействием УЗ, приводят к перемешиванию биологических жидкостей; в)при больших интенсивностях возникает явление кавитации – образование пузырьков, разрушающих ткани, химические связи – используют в УЗ скальпеле.

  •  Тепловое: обусловлено несколькими причинами: а)классическое поглощение, обусловленное внутренним трением и теплопроводностью среды; б)структурная перестройка крупных молекул, на которую затрачивается определенная часть энергии. Используется в физиотерапии.

  •  Химическое: а)повышается или понижается скорость химических реакций; б)структурная перестройка молекул; в)образование свободных радикалов; г)изменение рН среды; д)переход золей в гели и т.д..

  •  Физическое: воздействие ультразвука вызывает ускорение диффузии; УЗ–люминесценцию; образование разности потенциалов в биологических тканях; капиллярный эффект и др. Физическое действие УЗ используют для измерения вязкости, модуля Юнга, в УЗмикроскопии и др..

  •  Биологическое: УЗ оказывает комплексное воздействие, обусловленное действием механических, тепловых, физико-химических свойств. Воздействие УЗ зависит: 1) от его интенсивности; 2) длительности действия; 3) частоты следования импульсов. Живые объекты, обладающие системами гемеостоза могут полностью или частично нивелировать воздействие УЗ.

ВЫПОЛНЕНИЕ РАБОТЫ:

  1.  Подготовка аппарата УЗТ-101 к работе:
    1.  Нажмите кнопку «Излучатели» - «4».
    2.  Установите интенсивность 0,7 Вт/см2, нажав соответствующую кнопку.
    3.  Режим работы – непрерывный (кнопка «Н»).

Включение прибора: нажмите клавишу «Сеть» и поверните ручку таймера до упора по часовой стрелке.

  1.  Определение длины волны и скорости ультразвука в воде.

Соберите установку в соответствии с рисунком:

В плоскопараллельный сосуд налейте воды с крахмалом и размешайте. Получите четкую картинку параллельных полос. Объясните суть полученного явления и произведите необходимые измерения в соответствии с формулой ; для вычисления скорости УЗ в воде υ = λ·ν  взять частоту ν = 880 000 Гц. Используйте плакат.

  1.  Фокусировка ультразвука.

Установите интенсивность 1 Вт/см2 и замените кювету на стаканчик с фокусирующим дном, смазанным вазелином. Налейте воду до метки. Включите осветитель и аппарат. Обратите внимание на полученный эффект (фонтан + аэрозоль). Используя плакат, объясните фокусировку на основании закона преломления.

  1.  Нагревание вещества (воды) ультразвуком и определение полезной мощности генератора.
    1.  В фонтан опустите термометр и отмечайте его показания каждые 30 сек в течение 3-х минут. Отключите генератор и осветитель.
    2.  Определите полезную мощность по формуле: ,

где m=23г – масса воды в стаканчике,

      (t2t1) – изменение температуры за время τ.

3. Постройте график зависимости температуры от времени.

  1.  Наблюдение отражения, интерференции и дифракции УЗ волн.

Разместите на излучателе кювету с отражателями. Налейте воды, размешайте крахмал, включите осветитель и аппарат УЗТ и пронаблюдайте указанные явления.


 

А также другие работы, которые могут Вас заинтересовать

40079. Радиолинии и системы передачи сообщений с радиоканалами 45.28 KB
  Антенны подключаются к приемопередающему оборудованию при помощи фидерных трактов Ф. Пространственная избирательность достигается за счет использования антенны обеспечивающей прием нужных радиосигналов с одного направления и ослабление радиосигналов с других направлений от посторонних источников. Антенны и фидеры Антенна представляет собой элемент сопряжения между передающим или приемным оборудованием и средой распространения радиоволн. Антенны имеющие вид проводов или поверхностей обеспечивают излучение электромагнитных колебаний при...
40080. Принципы построения радиорелейных (РРЛ) и спутниковых систем связи (ССС) 38.88 KB
  Цепочку радиорелейной линии составляют радиорелейные станции трех типов: оконечные радиорелейные станции ОРС промежуточные радиорелейные станции ПРС узловые радиорелейные станции УРС.1 Радиорелейная линия связи На оконечной радиорелейной станции начинается и заканчивается тракт передачи. Аппаратура ОРС осуществляет преобразование сигналов поступающих от разных источников информации телефонные сигналы от междугородней телефонной станции телевизионные сигналы от междугородней телевизионной аппаратной и т. Радиосигналы ОРС с помощью...
40081. РРЛ прямой видимости и тропосферные 14.75 KB
  3 признака РРсв: 1наличие ретрансляции радио сигналов 2использование диапазона УКВ 3наземная радио связь Для обеспечения РРсв строятся РРЛ. Принцип РРЛ связи заключается в последовательной передачи сообщений от одной к другой РР станции для обеспечения заданной дальности. РРЛ называют совокупность техн.
40082. Принципы построения локальных сетей (Ethernet) 14.93 KB
  Наиболее широко используемой технологией является технология Ethernet и специализированный стандарт IEEE 802.3 При работе сети Ethernet используется топология звезда в которой каждый узел устройство соединен по сети с другим узлом с помощью активного сетевого оборудования такого как коммутатор. Типы сетей Ethernet Fst Ethernet Fst Ethernet это сеть Ethernet предназначенная для передачи данных со скоростью 100 Мбит с.
40083. Стандарты цифровых и аналоговых систем подвижной связи 14.48 KB
  К аналоговым ССПС относятся следующие стандарты: MPS усовершенствованная мобильная ТЛФ служба диапазон 800 МГц – США Канада Центральная и Южная Америка Австралия; это наиболее распространенный стандарт в мире; используется в России в качестве регионального стандарта. TCS общедоступная система связи диапазон 900 МГц – Англия Италия Испания Австрия Ирландия; второй по распространенности среди аналоговых; NМT – 450 и N МT – 900 мобильный телефон северных стран –...
40084. Принципы построения наземных и спутниковых систем телевизионного и звукового вещания 73.77 KB
  От недостатков земных радиорелейных линий свободны спутниковые системы связи ССС. В основе построения спутниковой системы связи лежит идея размещения ретранслятора на космическом аппарате КА. Принцип спутниковой связи заключается в ретрансляции аппаратурой спутника сигнала от передающих наземных станций к приёмникам. Благодаря этому обстоятельству в настоящее время почти все спутники связи предназначенные для коммерческого использования находятся на геостационарной орбите.
40085. ССС: геостационарные, низкие и средневысотные орбиты - принципы построения и их параметры 18.08 KB
  В системах спутниковой связи ССС основными показателями определяющим размеры зоны обслуживания качество и энергетику радиолиний являются тип орбиты и ее характеристики. Системы использующие КА на GEO MEO и LEOорбитах Показатель Геостац средне низкие Высота орбиты км 36 000 500015 000 5002000 Количество КА в ОГ 3 812 4866 Зона покрытия одного КА угол радиовидимости 50 от поверхности Земли 34 2528 37 Время пребывания КА в зоне радиовидимости в сутки 24 ч 152 ч 1015 мин Задержка при передаче речи мс Региональная связь...
40086. Параметры первичных сигналов 26.89 KB
  Основными первичными сигналами электросвязи являются: телефонный звукового вещания телевизионный телеграфный передачи данных. Основными параметрами телефонного сигнала являются: мощность телефонного сигнала PТЛФ. Согласно данным МСЭТ средняя мощность телефонного сигнала в точке с нулевым измерительным уровнем на интервале активности составляет 88 мкВт. С учетом коэффициента активности 025 средняя мощность телефонного сигнала PСР равна 22 мкВт.
40087. Теорема Шеннона для оценки производительности канала связи 17.5 KB
  Зато снизу к этому пределу можно подойти сколь угодно близко обеспечивая соответствующим кодированием информации сколь угодно малую вероятность ошибки при любой зашумленности канала. пропускная способность канала означающая теоретическую верхнюю границу скорости передачи данных которые можно передать с данной средней мощностью сигнала через аналоговый канал связи подверженный аддитивному белому гауссовскому шуму мощности равна: где пропускная способность канала бит с; полоса пропускания канала Гц; полная мощность сигнала над...