14640

Решение заданного дифференциальног уравнения методом Рунге – Кутта с применением «ручных» вычислений

Лабораторная работа

Информатика, кибернетика и программирование

Решить заданное дифференциальное уравнение методом Рунге – Кутта с применением ручных вычислений и с помощью программы с шагом h и шагом h/2. С помощью прикладного программного средства MathCAD методом Рунге – Кутта обеспечить вывод полученных решений в виде таблиц и граф...

Русский

2013-06-08

121.27 KB

23 чел.

Решить заданное дифференциальное уравнение методом Рунге – Кутта с применением «ручных» вычислений и с помощью программы с шагом h и шагом  h/2. С помощью прикладного программного средства (MathCAD) методом Рунге – Кутта обеспечить вывод полученных решений в виде таблиц и графиков.

1) Решение «вручную» с помощью MS Excel:

y=f(x,y)

a

b

y0

h

x+sin(y/3)

1.6

2.6

4.6

0.1

1.1) При h=0.1:

1)

2)

3)

4)

5)

6)

………………………………………………………………………………..

10)

1.2) При h=0.05:

1)

2)

3)

………………………………………..

19)

20)

  

Таблица результатов при h=0.1:

i

xi

y0

k1

f(x,y)=x+sin(y/3)

k2

f(x+h/2,y+k1/2)

0

1,6

4,6

0,259930

2,599298

0,264998

2,649983

1

1,7

h

0,269871

2,698707

0,274541

2,745411

2

1,8

0,1

0,278988

2,789884

0,283222

2,832219

3

1,9

0,287211

2,872105

0,290977

2,909768

4

2

0,294483

2,944828

0,297762

2,977620

5

2,1

0,300773

3,007726

0,303556

3,035562

6

2,2

0,306071

3,060711

0,308363

3,083633

7

2,3

0,310394

3,103941

0,312211

3,122114

8

2,4

0,313782

3,137823

0,315153

3,151530

9

2,5

0,316299

3,162987

0,317262

3,172619

10

2,6

0,318027

3,180270

0,318631

3,186307

i

k3

f(x+h/2,y+k2/2)

k4

f(x+h,y+k3)

Yi1

0

0,264998

2,649978

0,269871

2,698706

4,600000

1

0,274534

2,745336

0,278988

2,789882

4,864965

2

0,283209

2,832087

0,287210

2,872103

5,139467

3

0,290959

2,909592

0,294482

2,944824

5,422643

4

0,297742

2,977415

0,300772

3,007722

5,713571

5

0,303535

3,035347

0,306071

3,060706

6,011281

6

0,308342

3,083421

0,310394

3,103936

6,314785

7

0,312192

3,121921

0,313782

3,137816

6,623098

8

0,315137

3,151367

0,316298

3,162981

6,935262

9

0,317249

3,172494

0,318026

3,180264

7,250372

10

0,318622

3,186222

0,319067

3,190665

7,567596

Таблица результатов при h=0.05:

i

xi

y0

k1

f(x,y)=x+sin(y/3)

k2

f(x+h/2,y+k1/2)

0

1,6

4,6

0,129965

2,599298

0,131244

2,624875

1

1,65

h

0,132499

2,649980

0,133730

2,674598

2

1,7

0,05

0,134935

2,698707

0,136116

2,722311

3

1,75

0,137269

2,745374

0,138396

2,767915

4

1,8

0,139494

2,789884

0,140566

2,811318

5

1,85

0,141608

2,832153

0,142622

2,852440

6

1,9

0,143605

2,872105

0,144561

2,891213

7

1,95

0,145484

2,909680

0,146379

2,927582

8

2

0,147241

2,944828

0,148075

2,961506

9

2,05

0,148876

2,977516

0,149648

2,992957

10

2,1

0,150386

3,007726

0,151096

3,021926

11

2,15

0,151773

3,035453

0,152421

3,048416

12

2,2

0,153036

3,060711

0,153622

3,072447

13

2,25

0,154176

3,083526

0,154703

3,094055

14

2,3

0,155197

3,103941

0,155665

3,113291

15

2,35

0,156101

3,122016

0,156511

3,130220

16

2,4

0,156891

3,137823

0,157246

3,144922

17

2,45

0,157572

3,151447

0,157874

3,157489

18

2,5

0,158149

3,162987

0,158401

3,168027

19

2,55

 

0,158628

3,172555

0,158833

3,176650

20

2,6

0,159014

3,180270

0,159174

3,183485

i

k3

f(x+h/2,y+k2/2)

k4

f(x+h,y+k3)

Yi2

0

0,131244

2,624878

0,132499

2,649980

4,600000

1

0,133730

2,674592

0,134935

2,698707

4,731240

2

0,136115

2,722297

0,137269

2,745373

4,864965

3

0,138395

2,767893

0,139494

2,789884

5,001076

4

0,140564

2,811289

0,141608

2,832152

5,139467

5

0,142620

2,852405

0,143605

2,872105

5,280027

6

0,144559

2,891172

0,145484

2,909679

5,422643

7

0,146377

2,927537

0,147241

2,944828

5,567198

8

0,148073

2,961457

0,148876

2,977516

5,713571

9

0,149645

2,992906

0,150386

3,007726

5,861640

10

0,151094

3,021874

0,151773

3,035453

6,011281

11

0,152418

3,048363

0,153036

3,060710

6,162371

12

0,153620

3,072395

0,154176

3,083525

6,314786

13

0,154700

3,094005

0,155197

3,103941

6,468402

14

0,155662

3,113243

0,156101

3,122015

6,623098

15

0,156509

3,130176

0,156891

3,137822

6,778757

16

0,157244

3,144881

0,157572

3,151446

6,935262

17

0,157873

3,157453

0,158149

3,162986

7,092502

18

0,158400

3,167995

0,158628

3,172554

7,250372

19

0,158831

3,176623

0,159013

3,180269

7,408768

20

0,159173

3,183463

0,159313

3,186263

7,567596

Относительные погрешности метода:

Влияние шага на точность вычислений:

2) Решение в MathCad:

2.1) При  h=0.1:

2.2) При h=0.05:


Относительные погрешности метода:

3) Решение в Matlab:

создадим документ Blank M-file, напечатаем

function f=fun2(t,y)

f=t+sin(y/3);

сохраним под именем fun2

>> t=1.6;

>> h=0.1;

>> t_fin=2.6;

>> y0=4.6;

>> [t,y]=ode45('fun2',[1.6:h:t_fin],[y0]);

>> plot(t,y,'LineWidth', 2);grid;

>> single(y)

ans =

  4.5999999

  4.8649654

  5.1394668

  5.4226437

  5.7135711

  6.0112815

  6.3147855

  6.6230979

  6.9352617

  7.2503719

  7.5675964

Округлим до 6-ти цифр после запятой:

y=

4.600000

4.864965

5.139467

5.422644

5.713571

6.011282

6.314786

6.623098

6.935262

7.250372

7.567596

>> h=0.05;

>> [t,y]=ode45('fun2',[1.6:h:t_fin],[y0]);

>> hold on;

>> plot(t,y,'LineWidth', 2);grid;

single(y)

ans =

  4.5999999

  4.7312398

  4.8649654

  5.0010762

  5.1394668

  5.2800274

  5.4226437

  5.5671983

  5.7135711

  5.8616400

  6.0112815

  6.1623712

  6.3147855

  6.4684014

  6.6230979

  6.7787566

  6.9352617

  7.0925026

  7.2503719

  7.4087682

  7.5675964

Округлим до 6-ти цифр после запятой:

y=

  4.600000

  4.731240

  4.864965

  5.001076

  5.139467

  5.280027

  5.422644

  5.567198

  5.713571

  5.861640

  6.011282

  6.162371

  6.314786

  6.468401

  6.623098

  6.778757

  6.935262

  7.092503

  7.250372

  7.408768

  7.567596

Таким образом, y = 7.567596

Относительные погрешности метода:

Сводная таблица результатов:

Метод

Результат

δ(y), %

h

h/2

h

h/2

«вручную» с Excel

7,567596

7,567596

MathCad

7,567596

7,567596

Matlab

Вывод: относительная погрешность во всех методах одинакова, выявить наиболее точный метод не удалось. На приведенных графиках видно, что с уменьшением шага повышается точность вычислений. В данном случае, при решении способом Рунге-Кутта, по сравнению с методом Эйлера мы получили чуть большую погрешность вычислений (0.000014% против 0.000013%).

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РТ

АЛЬМЕТЬЕВСКИЙ ГОСУДАРСТВЕННЫЙ

НЕФТЯНОЙ ИНСТИТУТ

Кафедра информатики

ЛАБОРАТОРНАЯ  РАБОТА №11

По дисциплине: «Прикладное программирование»

На тему: «Численное решение обыкновенного дифференциального

уравнения первого порядка методом Рунге-Кутта»

Вариант №42

Выполнил: студент группы 10-21   Хохлов Р.С. Проверил: доцент каф. информатики Амиров Д.Ф.

Альметьевск 2013


 

А также другие работы, которые могут Вас заинтересовать

75595. Відвідування кінотеатру в Англії, План-конспект уроку з англійської мови для учнів 9-х класів 61.5 KB
  Активізувати у мові учнів ЛО теми «Відвідування кінотеатру», «Кіно». Практикувати в аудіюванні та читанні тексту з метою отримання загального уявлення (skimming) та з метою максимально повного й точного розуміння всієї інформації, що міститься в тексті (scanning). Практикувати учнів у спілкуванні в формі діалогу-розпитування, діалогу-обміну думками.
75596. Кіно в Британії. Моє відвідування кінотеатру 58.5 KB
  Обладнання: підручник Keyfcts bout film HO1 Trueorflse H02. T: In your notebook write 9 types of films. I will cll out one type of films t time. If you her one of your type of films put your hnd up nd cross the word out.
75597. Театри в Великобританії. Бесіда по телефону, План-конспект уроку з англійської мови для учнів 9-х класів 70 KB
  Активізувати у мові учнів ЛО теми «Відвідування театру». Практикувати учнів у читанні тексту з метою отримання загального уявлення (skimming) з метою максимально повного й точного розуміння всієї інформації, що міститься в тексті (scanning). Повторити навчальний матеріал про ведення бесіди по телефону.
75598. ЦИФРОВАЯ ОБРАБОТКА КОРОТКИХ СИГНАЛОВ. ОПРЕДЕЛЕНИЕ ЧАСТОТЫ СИГНАЛА 140 KB
  Одной из важнейших задач цифровой обработки зашумленных сигналов является обнаружение информативного сигнала в потоке данных искаженных шумами и помехами и определение его параметров. Каждая из этих операций позволяет выполнять преобразования исходного сигнала например переход сигнала из временной области в частотную или наоборот причем при этом производится уменьшение уровня шумов в обработанном сигнале. В задачах обнаружения и определения параметров защумленных сигналов усиление эффекта подавления шумов и...
75599. ЦИФРОВАЯ ОБРАБОТКА КОРОТКИХ СИГНАЛОВ. ОПРЕДЕЛЕНИЕ ВРЕМЕННЫХ ИНТЕРВАЛОВ МЕЖДУ РАДИОИМПУЛЬСАМИ 189.5 KB
  Известный способ измерения расстояния до объекта основан на измерении времени задержки отраженного радиолокационного сигнала от возбуждающего радиоимпульса. По времени задержки отраженного сигнала от зондирующего определяется толщина металла. Однако увеличение количества накоплений позволяет улучшать отношение сигнал шум без искажения формы и уменьшения амплитуды накопленного отраженного сигнала лишь до некоторого предела. При ограничении времени проведения анализа количество возможных...
75600. ЦИФРОВАЯ ОБРАБОТКА НЕСТАЦИОНАРНЫХ СИГНАЛОВ. ПРЕОБРАЗОВАНИЕ ГИЛЬБЕРТА-ХУАНГА 140 KB
  Каждый из этих колебательных режимов может быть представлен функцией внутренней моды intrinsic mode function IMF. IMF представляет собой колебательный режим как часть простой гармонической функции но вместо постоянной амплитуды и частоты как в простой гармонике у IMF могут быть переменная амплитуда и частота как функции независимой переменной времени координаты и пр. Любую функцию и любой произвольный сигнал можно разделить на семейство функций IMF. Процесс отсева функций IMF.
75601. ПРЕОБРАЗОВАНИЕ ГИЛЬБЕРТА 30.5 KB
  Спектральный анализ Гильберта HS применяется для описания нестационарных сигналов т. Мгновенная частота может быть вычислена по формуле wt = d q t dt Цель применения преобразования Гильберта IMF определенные вышеприведенным способом допускают вычисление физически значимых мгновенных частот что дает возможность создать частотно-временное представление сигнала на основе преобразования Гильберта. ЦОС по методу Гильберта-Хуанга включает последовательное применение нескольких...
75602. ОБРАБОТКА ИЗОБРАЖЕНИЙ 345.5 KB
  Целью обработки может являться также улучшение качества изображения для лучшего визуального восприятия геометрические преобразования масштабирование поворот в общем нормализация изображений по яркости контрастности резкости выделение границ изображений автоматическая классификация и подсчет однотипных объектов на изображении сжатие информации об изображении. К основным видам искажений изображений затрудняющих идентификацию можно отнести: Недостаточную контрастность и яркость связанную с недостаточной освещенностью объекта;...
75603. МЕТОДЫ УЛУЧШЕНИЕ ВИЗУАЛЬНОГО КАЧЕСТВА ИЗОБРАЖЕНИЙ 1.67 MB
  MTLB предоставляет средства интерактивной работы с изображениями в различных графических форматах включая: Изменение масштаба изображения; Изменение яркости и контрастности; Поворот изображения; Многие виды фильтрации; Конвертирование графического формата...