14640

Решение заданного дифференциальног уравнения методом Рунге – Кутта с применением «ручных» вычислений

Лабораторная работа

Информатика, кибернетика и программирование

Решить заданное дифференциальное уравнение методом Рунге – Кутта с применением ручных вычислений и с помощью программы с шагом h и шагом h/2. С помощью прикладного программного средства MathCAD методом Рунге – Кутта обеспечить вывод полученных решений в виде таблиц и граф...

Русский

2013-06-08

121.27 KB

23 чел.

Решить заданное дифференциальное уравнение методом Рунге – Кутта с применением «ручных» вычислений и с помощью программы с шагом h и шагом  h/2. С помощью прикладного программного средства (MathCAD) методом Рунге – Кутта обеспечить вывод полученных решений в виде таблиц и графиков.

1) Решение «вручную» с помощью MS Excel:

y=f(x,y)

a

b

y0

h

x+sin(y/3)

1.6

2.6

4.6

0.1

1.1) При h=0.1:

1)

2)

3)

4)

5)

6)

………………………………………………………………………………..

10)

1.2) При h=0.05:

1)

2)

3)

………………………………………..

19)

20)

  

Таблица результатов при h=0.1:

i

xi

y0

k1

f(x,y)=x+sin(y/3)

k2

f(x+h/2,y+k1/2)

0

1,6

4,6

0,259930

2,599298

0,264998

2,649983

1

1,7

h

0,269871

2,698707

0,274541

2,745411

2

1,8

0,1

0,278988

2,789884

0,283222

2,832219

3

1,9

0,287211

2,872105

0,290977

2,909768

4

2

0,294483

2,944828

0,297762

2,977620

5

2,1

0,300773

3,007726

0,303556

3,035562

6

2,2

0,306071

3,060711

0,308363

3,083633

7

2,3

0,310394

3,103941

0,312211

3,122114

8

2,4

0,313782

3,137823

0,315153

3,151530

9

2,5

0,316299

3,162987

0,317262

3,172619

10

2,6

0,318027

3,180270

0,318631

3,186307

i

k3

f(x+h/2,y+k2/2)

k4

f(x+h,y+k3)

Yi1

0

0,264998

2,649978

0,269871

2,698706

4,600000

1

0,274534

2,745336

0,278988

2,789882

4,864965

2

0,283209

2,832087

0,287210

2,872103

5,139467

3

0,290959

2,909592

0,294482

2,944824

5,422643

4

0,297742

2,977415

0,300772

3,007722

5,713571

5

0,303535

3,035347

0,306071

3,060706

6,011281

6

0,308342

3,083421

0,310394

3,103936

6,314785

7

0,312192

3,121921

0,313782

3,137816

6,623098

8

0,315137

3,151367

0,316298

3,162981

6,935262

9

0,317249

3,172494

0,318026

3,180264

7,250372

10

0,318622

3,186222

0,319067

3,190665

7,567596

Таблица результатов при h=0.05:

i

xi

y0

k1

f(x,y)=x+sin(y/3)

k2

f(x+h/2,y+k1/2)

0

1,6

4,6

0,129965

2,599298

0,131244

2,624875

1

1,65

h

0,132499

2,649980

0,133730

2,674598

2

1,7

0,05

0,134935

2,698707

0,136116

2,722311

3

1,75

0,137269

2,745374

0,138396

2,767915

4

1,8

0,139494

2,789884

0,140566

2,811318

5

1,85

0,141608

2,832153

0,142622

2,852440

6

1,9

0,143605

2,872105

0,144561

2,891213

7

1,95

0,145484

2,909680

0,146379

2,927582

8

2

0,147241

2,944828

0,148075

2,961506

9

2,05

0,148876

2,977516

0,149648

2,992957

10

2,1

0,150386

3,007726

0,151096

3,021926

11

2,15

0,151773

3,035453

0,152421

3,048416

12

2,2

0,153036

3,060711

0,153622

3,072447

13

2,25

0,154176

3,083526

0,154703

3,094055

14

2,3

0,155197

3,103941

0,155665

3,113291

15

2,35

0,156101

3,122016

0,156511

3,130220

16

2,4

0,156891

3,137823

0,157246

3,144922

17

2,45

0,157572

3,151447

0,157874

3,157489

18

2,5

0,158149

3,162987

0,158401

3,168027

19

2,55

 

0,158628

3,172555

0,158833

3,176650

20

2,6

0,159014

3,180270

0,159174

3,183485

i

k3

f(x+h/2,y+k2/2)

k4

f(x+h,y+k3)

Yi2

0

0,131244

2,624878

0,132499

2,649980

4,600000

1

0,133730

2,674592

0,134935

2,698707

4,731240

2

0,136115

2,722297

0,137269

2,745373

4,864965

3

0,138395

2,767893

0,139494

2,789884

5,001076

4

0,140564

2,811289

0,141608

2,832152

5,139467

5

0,142620

2,852405

0,143605

2,872105

5,280027

6

0,144559

2,891172

0,145484

2,909679

5,422643

7

0,146377

2,927537

0,147241

2,944828

5,567198

8

0,148073

2,961457

0,148876

2,977516

5,713571

9

0,149645

2,992906

0,150386

3,007726

5,861640

10

0,151094

3,021874

0,151773

3,035453

6,011281

11

0,152418

3,048363

0,153036

3,060710

6,162371

12

0,153620

3,072395

0,154176

3,083525

6,314786

13

0,154700

3,094005

0,155197

3,103941

6,468402

14

0,155662

3,113243

0,156101

3,122015

6,623098

15

0,156509

3,130176

0,156891

3,137822

6,778757

16

0,157244

3,144881

0,157572

3,151446

6,935262

17

0,157873

3,157453

0,158149

3,162986

7,092502

18

0,158400

3,167995

0,158628

3,172554

7,250372

19

0,158831

3,176623

0,159013

3,180269

7,408768

20

0,159173

3,183463

0,159313

3,186263

7,567596

Относительные погрешности метода:

Влияние шага на точность вычислений:

2) Решение в MathCad:

2.1) При  h=0.1:

2.2) При h=0.05:


Относительные погрешности метода:

3) Решение в Matlab:

создадим документ Blank M-file, напечатаем

function f=fun2(t,y)

f=t+sin(y/3);

сохраним под именем fun2

>> t=1.6;

>> h=0.1;

>> t_fin=2.6;

>> y0=4.6;

>> [t,y]=ode45('fun2',[1.6:h:t_fin],[y0]);

>> plot(t,y,'LineWidth', 2);grid;

>> single(y)

ans =

  4.5999999

  4.8649654

  5.1394668

  5.4226437

  5.7135711

  6.0112815

  6.3147855

  6.6230979

  6.9352617

  7.2503719

  7.5675964

Округлим до 6-ти цифр после запятой:

y=

4.600000

4.864965

5.139467

5.422644

5.713571

6.011282

6.314786

6.623098

6.935262

7.250372

7.567596

>> h=0.05;

>> [t,y]=ode45('fun2',[1.6:h:t_fin],[y0]);

>> hold on;

>> plot(t,y,'LineWidth', 2);grid;

single(y)

ans =

  4.5999999

  4.7312398

  4.8649654

  5.0010762

  5.1394668

  5.2800274

  5.4226437

  5.5671983

  5.7135711

  5.8616400

  6.0112815

  6.1623712

  6.3147855

  6.4684014

  6.6230979

  6.7787566

  6.9352617

  7.0925026

  7.2503719

  7.4087682

  7.5675964

Округлим до 6-ти цифр после запятой:

y=

  4.600000

  4.731240

  4.864965

  5.001076

  5.139467

  5.280027

  5.422644

  5.567198

  5.713571

  5.861640

  6.011282

  6.162371

  6.314786

  6.468401

  6.623098

  6.778757

  6.935262

  7.092503

  7.250372

  7.408768

  7.567596

Таким образом, y = 7.567596

Относительные погрешности метода:

Сводная таблица результатов:

Метод

Результат

δ(y), %

h

h/2

h

h/2

«вручную» с Excel

7,567596

7,567596

MathCad

7,567596

7,567596

Matlab

Вывод: относительная погрешность во всех методах одинакова, выявить наиболее точный метод не удалось. На приведенных графиках видно, что с уменьшением шага повышается точность вычислений. В данном случае, при решении способом Рунге-Кутта, по сравнению с методом Эйлера мы получили чуть большую погрешность вычислений (0.000014% против 0.000013%).

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РТ

АЛЬМЕТЬЕВСКИЙ ГОСУДАРСТВЕННЫЙ

НЕФТЯНОЙ ИНСТИТУТ

Кафедра информатики

ЛАБОРАТОРНАЯ  РАБОТА №11

По дисциплине: «Прикладное программирование»

На тему: «Численное решение обыкновенного дифференциального

уравнения первого порядка методом Рунге-Кутта»

Вариант №42

Выполнил: студент группы 10-21   Хохлов Р.С. Проверил: доцент каф. информатики Амиров Д.Ф.

Альметьевск 2013


 

А также другие работы, которые могут Вас заинтересовать

71273. Системы управления автоматизированным технологическим оборудованием. История развития вычислительной техники 1.15 MB
  Период становления отечественной электронной вычислительной техники занимает промежуток времени с момента появления в 1946 г. первой ЭВМ ЭНИАК и до 1955 г. Начиная с 1955 г. каждые последующие пять лет в вычислительной технике обновлялись конструктивно-технологические...
71274. Накопители 499.5 KB
  Магазинные загрузочные устройства МЗУ комплекс функциональных механизмов предназначенных для приемки в ориентированном положении изделий хранения с расположением их в один ряд и автоматической выдачи изделий в рабочую зону технологических машин или в зону захвата...
71275. Токарные автоматы и полуавтоматы 1.77 MB
  Токарные автоматы и полуавтоматы предназначены для изготовления деталей с использованием нескольких инструментов в крупносерийном и массовом производстве. Автомат - станок, автоматически и многократно выполняющий все рабочие и вспомогательные элементы цикла обработки детали, кроме наладки.
71277. Понятие «способности». Структура и виды способностей 2.29 MB
  Структура и виды способностей Проблема способностей всегда волновала умы и с теоретической и с практической стороны. Встречая проявления ярких способностей мы удивляемся и восхищаемся ими. Почти каждому хочется узнать потенциал своих способностей.
71278. Обработка сталей и чугунов резанием 169 KB
  Пластичные сплавы обрабатываются труднее чем менее пластичные сплавы обладающие большей теплопроводностью и теплоемкостью легче так как температура резания при обработке этих сплавов ниже. Алюминиевые сплавы.
71279. Понятие о темпераменте. Физиологические основы темперамента 167.02 KB
  Темперамент выступает в качестве общей основы многих личностных характеристик человека и прежде всего характера. Физиологические основы характера В психологии понятие характер греч. Понятие характера весьма различается в теоретических построениях отдельных авторов.
71280. Воля. Общая характеристика волевых действий 85 KB
  Воля — это сознательное регулирование человеком своего поведения и деятельности, выраженное в умении преодолевать внутренние и внешние трудности при совершении целенаправленных действий и поступков. Главная функция воли заключается в сознательной регуляции активности в затрудненных условиях жизнедеятельности.