14695

ОПРЕДЕЛЕНИЕ ЭНЕРГИИ α-ЧАСТИЦ ПО ВЕЛИЧИНЕ ИХ ПРОБЕГА В ВОЗДУХЕ

Лабораторная работа

Физика

ЛАБОРАТОРНАЯ РАБОТА №22 ОПРЕДЕЛЕНИЕ ЭНЕРГИИ αЧАСТИЦ ПО ВЕЛИЧИНЕ ИХ ПРОБЕГА В ВОЗДУХЕ Ядра некоторых изотопов как естественных так и искусственных могут самопроизвольно превращаться в другие ядра. Такие превращения ядер называют радиоактивным распадом. При испу...

Русский

2013-06-09

53 KB

2 чел.

ЛАБОРАТОРНАЯ РАБОТА №22

ОПРЕДЕЛЕНИЕ ЭНЕРГИИ α-ЧАСТИЦ

ПО ВЕЛИЧИНЕ ИХ ПРОБЕГА В ВОЗДУХЕ

Ядра некоторых изотопов, как естественных, так и искусственных, могут самопроизвольно превращаться в другие ядра. Такие превращения ядер называют радиоактивным распадом.

При испускании α-частиц (ядер атома гелия) ядро теряет два протона и два нейтрона. Поэтому у получившегося (дочернего) ядра V1 по сравнению с исходным (материнским) ядром X  массовое число А меньше на четыре, а порядковый номер Z – на два. В соответствие со сказанным, схема α-распада имеет вид:

.

Энергия а - частиц, возникающих при ядер, лежит обычно в пределах от 4 до 8 МэВ (максимум 10,5 МэВ, минимум 1,8 МэВ). При этом имеется тенденция к уменьшению периода полураспада с увеличением энергии α-частиц.

Вообще говоря, ядра одного и того же изотопа могут испускать α-частицы с несколькими строго определёнными значениями энергии. Иначе говоря, α-частицы обладают дискретным энергетическим спектром. Если при α-распаде дочернее ядро получается сразу в основном состоянии, то α-частица при этом испускается с наибольшей возможной энергией. Если же дочернее ядро получается в одном из возможных состояний, то энергия α-частицы оказывается меньше, но дочернее ядро испускает затем γ-кванты.

При прохождении α-частиц через вещество (например, воздух) происходит ионизация молекул (атомов) вещества. При этом α-частицы, двигаясь практически прямолинейно, теряют при столкновениях с молекулами вещества свою энергию и могут потерять её всю при прохождении достаточно толстых слоев вещества.

Число, пар ионов образованных, частицей на единицу длины пути, называется удельной ионизацией. Зная удельную ионизацию и энергию, теряемую α-частицей при образовании пары ионов, легко и потери энергии частицей на единице длины пути ∆Е/∆Х – так называемые удельные ионизационные потери энергии. Согласно формуле Бора

    (2)

где е - заряд электрона, n0 – концентрация электронов в веществе, m - масса электрона;  - скорость α-частицы и ν -средняя частота обращения электронов в атомах данного вещества.

Из последней формулы видно, что при увеличении толщины X слоя вещества удельные ионизационные потери ∆Е/∆Х растут, т.к. падает скорость υ α-частицы.

Однако при малых υ формула Бора не описывает реальную зависимость потерь ∆Е/∆Х от X, т.к. характер взаимодействия α-частиц с веществом в этом случае меняется:

Начинают играть роль процессы перезарядки α-частицы, т.е. Процессы, в которых α-частица захватывает электроны атомов среды вещества и может становиться атомом или однозарядным ионом гелия. Перезарядка α-частиц объясняет резкий спад величины удельных ионизационных потерь в конце пробега α-частиц (рис. 1). 

Энергию, которую имела частица в тот момент, когда она влетала в слой данного вещества, можно найти, если α-частица полностью остановилась в этом слое. Для α-частиц длина пробега R в воздухе при нормальных условиях в зависимости от начальной энергии Е может быть найдена по формуле:

R = 0,32E3/2 ,          (2)

где R выражено в см, а Е в МЭВ.

Практическая часть

Включить прибор в режим счёта, удаляя, α-источник от сцинтиллятора. Провести измерения счёта N частиц с расстояния г = 0 через 1 мм до значения счёта, соответствующего фону. Затем выполнить те же измерения в обратном порядке.

  1.  Определить среднее значение .
  2.  Освободить данные от фона: .
  3.  Построить, график зависимости  и определить пробег R из условия .
  4.  По формуле (2) найти максимальную энергию Е α-частиц.
  5.  Оценить ошибки определения максимальной энергии Е α-частиц.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

  1.  Широков, Ю.М., Юдин, Н.Л. Ядерная физика. М., 1980.
  2.  Сивухин, Д.В. Общий курс физики. М., 1990. Т.5, часть 2.


 

А также другие работы, которые могут Вас заинтересовать

81557. Свертывающая система крови. Этапы образования фибринового сгустка. Внутренний и внешний пути свертывания и их компоненты 234.47 KB
  При повреждении кровеносного сосуда инициируется каскад реакций, в результате которого образуется сгусток крови - тромб, предотвращающий кровотечение. Основную роль в свёртывании (коагуляции) крови играют тромбоциты и ряд белков плазмы крови. В остановке кровотечения различают 3 этапа. На первом этапе происходит сокращение кровеносного сосуда
81558. Принципы образования и последовательность фукционирования ферментных комплексов прокоагулянтного пути. Роль витамина К в свертывании крови 107.4 KB
  В циркулирующей крови содержатся проферменты протеолитических ферментов: фактор II протромбин фактор VII проконвертин фактор IX Кристмаса фактор X Стюарта. Находящиеся в крови факторы V акцелерин и VIII антигемофильный фактор а также мембранный белок тканевый фактор ТФ фактор III являются белкамиактиваторами этих ферментов. Комплекс XVСа2 протромбиназный комплекс активирует протромбин фактор II. В процессе реализации тромбогенного сигнала проферменты факторы VII IX X и II частичным протеолизом превращаются в...
81559. Основные механизмы фибринолиза. Активаторы плазминогена как тромболитические средства. Основаные антикоагулянты крови: антитромбин III, макроглобулин, антиконвертин. Гемофилии 154.37 KB
  Основаные антикоагулянты крови: антитромбин III макроглобулин антиконвертин. Такие ингибиторы ферментов свёртывания крови как α2макроглобулин α1антитрипсин и комплекс антитромбин IIIгепарин также обладают небольшой фибринолитической активностью. Снижение фибринолитической активности крови сопровождается тромбозами. Нарушение разрушения фибринового сгустка может быть вызвано наследственным дефицитом плазминогена или генетическим дефектом его структуры снижением поступления в кровь активаторов плазминогена повышением содержания в крови...
81560. Клиническое значение биохимического анализа крови 101.37 KB
  Среди медицинских анализов особенное значение имеет анализ крови связующего звена между всеми системами и органами тела. Распространенным лабораторным методом изучения ее состава является биохимический анализ крови. В связи со своей универсальностью биохимический анализ крови назначается врачами разных медицинских специальностей терапевтами кардиологами гастроэнтерологами ревматологами и другими.
81561. Основные мембраны клетки и их функции. Общие свойства мембран: жидкостность, поперечная асимметрия, избирательная проницаемость 106.22 KB
  Все клетки имеют мембраны. Мембраны ответственны за выполнение многих важнейших функций клетки. К основным функциям мембран можно отнести: отделение клетки от окружающей среды и формирование внутриклеточных компартментовотсеков; контроль и регулирование транспорта огромного разнообразия веществ через мембраны; участие в обеспечении межклеточных взаимодействий передаче внутрь клетки сигналов; преобразование энергии пищевых органических веществ в энергию химических связей молекул АТФ.
81562. Липидный состав мембран (фосфолипиды, гликолипиды, холестерин). Роль липидов в формировании липидного бислоя 104.87 KB
  В мембранах присутствуют липиды трёх главных типов фосфолипиды гликолипиды и холестерол холестерин. Липидный состав мембран различен содержание того или другого липида повидимому определяется разнообразием функций выполняемых этими липидами в мембранах. В мембранах эукариотических клеток обнаружено огромное количество разных фосфолипидов причём они распределены неравномерно по разным клеточным мембранам. В плазматических мембранах клеток в значительных количествах содержатся сфингомиелины.
81563. Белки мембран - интегральные, поверхностные, «заякоренные». Значение посттрансляционных модификаций в образовании функциональных мембранных белков 104.74 KB
  Мембранные белки контактирующие с гидрофобной частью липидного бислоя должны быть амфифильными. Белки мембран различаются по своему положению в мембране. Они могут глубоко проникать в липидный бислой или даже пронизывать его интегральные белки либо разными способами прикрепляться к мембране поверхностные белки. Поверхностные белки.
81564. Механизмы переноса веществ через мембраны: простая диффузия, первично-активный транспорт (Nа+-К+-АТФаза, Са2+-АТФаза), пассивный симпорт и антипорт, вторично-активный транспорт 106.69 KB
  Перенос некоторых неорганических ионов идёт против градиента концентрации при участии транспортных АТФаз ионных насосов. АТФазы различаются по ионной специфичности количеству переносимых ионов направлению транспорта. В результате функционирования АТФазы переносимые ионы накапливаются с одной стороны мембраны.
81565. Трансмембранная передача сигнала. Участие мембран в активации внутриклеточных регуляторных систем - аденилатциклазной и инозитолфосфатной в передаче гормонального сигнала 109.02 KB
  Важное свойство мембран - способность воспринимать и передавать внутрь клетки сигналы из внешней среды. \"Узнавание\" сигнальных молекул осуществляется с помощью белков-рецепторов, встроенных в клеточную мембрану клеток-мишеней или находящихся в клетке. Клетку-мишень определяют по способности избирательно связывать данную сигнальную молекулу