1479

Мостовые устройства СВЧ

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Проектирование делителя (сумматора) мощности пополам (моста Уилкинсона) на микрополосковых ЛП. Проектирование делителя (сумматора) мощности пополам (моста Уилкинсона) на основе сосредоточенных реактивных элементов. Расчет МУ на сосредоточенных элементах.

Русский

2013-01-06

357.77 KB

249 чел.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ 
Государственное образовательное учреждение высшего профессионального образования 
«Санкт-Петербургский государственный электротехнический университет 
«ЛЭТИ» им. В.И.Ульянова (Ленина)» 
(СПбГЭТУ) 
 
 
ФРТ 
 
 
Кафедра ТОР 
 
 
 
 
 

КУРСОВАЯ РАБОТА 
 
 
По дисциплине:  «Техническая электродинамика» 
 
 
 
На тему:  «Мостовые устройства СВЧ» 
 
 
 

(Вариант № 3 ) 
 
 

 
 
 
 
 
Выполнил   

Оценка __________________
студент гр.  
                         Проверил 
 
 

Дата ____________________
 
 

 
 
 
 

Санкт-Петербург 
2009 г. 
 
 
 

СОДЕРЖАНИЕ 
 
Задание……………………………………………………………………………………………3 
 
1.  Проектирование делителя (сумматора) мощности пополам (моста Уилкинсона) на 
микрополосковых ЛП……………………………………………………………………4 
 
1.1. 
Теоретические сведения…………………………………………………..……..4 
1.2. 
 Расчет конструкции МУ на микрополосковых ЛП…………………..……….6  
 
2.  Проектирование делителя (сумматора) мощности пополам (моста Уилкинсона) на 
основе сосредоточенных реактивных элементов……………….……………..………9 
 
2.1. Анализ схемы МУ………………………………………………………………….10 
2.2. Расчет МУ на сосредоточенных элементах……………………………………...11 
Заключение…………………………………………………………………………...………....12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2

Задание 
 
В  данной  работе  требуется    рассчитать  структуру  мостовых  устройств  СВЧ,  а 
именно,  делителя  мощности  на  два  как  на  микрополосковых  линиях,  так  и  на  
сосредоточенных элементах (центральная частота   = 1.5 ГГц). 
0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3

1. Проектирование делителя (сумматора) мощности 
пополам (моста Уилкинсона) на микрополосковых ЛП 
 
1.1.  Теоретические сведения 

Это  устройство  представляет  собой  шестиполюсник  (т.е.  устройство  с  тремя 
портами, каждый из которых может рассматриваться как двухполюсник). Входной 
порт  соединен  отрезками  линий  передачи  с  двумя  выходными  портами.  Сумма 
мощностей,  выходящих  из  выходных  портов,  должна  равняться  мощности, 
входящей во входной порт. Структура устройства изображена на рис. 1 
 
 
 
                            Рис.1. Структура делителя (сумматора) 
 
 
Отрезок  линии W1 соединяет  входной  порт    с  первым  выходным  портом, 
отрезок W2 – со  вторым  выходным  портом.  Пусть  входной  порт  имеет  номер  1, 
первый выходной – номер 2, второй выходной – номер 3. 
Тогда матрица рассеяния будет иметь вид: 


11
S
12
S
13
S
[


] = S
.  
21
S22 S23


S

⎣ 31 S32 S33 ⎦
Осью  симметрии  является  горизонталь,  проходящая  через W3, и,  ввиду  этого, 
должны выполняться равенства:  
,
,
,
=
 
12
13
21
31
23
32
S22
33
S
 Будем  предполагать,  что  волновые  сопротивления  линий,  питающих  все  порты, 
одинаковы  и  равны  .  Очевидно,  что  отрезки  линий  передач W1 и W2 должны 
0
трансформировать  сопротивление  в  величину  2⋅
,  чтобы  суммарное 
0
Z0
сопротивление  на  входе  первого  порта  было  бы  равно  .  Для  этого  отрезки 
0
λ
должны иметь длину   и волновое сопротивление  , удовлетворяющее условию 
4
01
2
01
2
Z
⋅ =
, откуда
= 2 ⋅ . Очевидно, что при этом порт 1 будет согласован, а 
0
Z01
Z0
Z0
мощности  в  портах 2 и 3 будут  равны  половине  мощности,  входящей  в  порт 1. 
Учитывая  фазовые  сдвиги,  о  которых  говорилось  выше,  матрица  рассеяния  будет 
иметь вид: 
 
4

⎡ 0
i

[


]
1
=
1/ 2
−1/ 2

⎥  
2 ⎢

−1/ 2
1/ 2


λ
 При отклонении частоты от номинальной, (при которой длина отрезков равна 
), 
4
коэффициенты  матрицы  будут  изменяться,  так  как  при  трансформации  из 
0
портов 2 и 3 в порт 1 на его входе суммарное сопротивление уже не будет равно 
.  Для  улучшения  согласования  входного  порта 1 при  отклонении  нагрузок  в 
0
портах 2 и 3 от  величины  ,  между  портами 2 и 3 включается  балластное 
0
сопротивление величиной  2⋅  
0
 
 
Рис. 2. Структура МУ с нагрузками и балластным сопротивлением 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5

1.2.  Расчет конструкции МУ на микрополосковых ЛП  
В  настоящее  время  конструкции  СВЧ  устройств  для  мощностей  до  десятка  ватт 
базируются исключительно на микрополосковых ЛП.  
В качестве подложки используем материал поликор (ε =9.8, tg δ=0.001), толщиной 
r
h=2.5 мм.  
Минимально  необходимая  толщина  слоя  фольги t равна,  примерно, 2─5  толщинам 
скин-слоя. Величина скин-слоя для меди может быть оценена как  
 
t = 18 мкм 
Проводимость меди равна 
7
88
.
5
10−

См.  
 
   Длина  подводящей  МП  (отрезок W3 на  рис. 1) выбирается  произвольной,  так  как  она 
просто соединяет порт 1 с  остальной частью схемы всего устройства. Теперь на основе 
полученных  размеров  необходимо  выбрать  топологию  МУ.  Обратившись  к  рис. 2 мы 
видим, что концы МП W1 и W2 нагружены на порты 2 и 3 и балластное сопротивление. 
Так  как  размеры  его  невелики,  концы  отрезков W1 и W2 должны  быть  расположены 
близко  друг  от  друга.  Для  получения  компактной  структуры  отрезки  изгибаются  в  виде 
буквы П (или полуколец), как показано на рис. 3. 
 
2
1
3
 
 
Рис. 3. Схематический вид топологии МУ 
 
 
МП у порта 1 имеет   , равное 50 Ом. Тогда МП, ведущие к портам 2 и 3, имеют 
0
  по 70.7 Ом.  Между  портами 2 и 3 должно  быть  подсоединено  балластное 
0
сопротивление 100 Ом.  
 
Теперь,  с  помощью  калькулятора TxLine определяем  размеры  МП.  В  результате 
получаем следующие размеры: 
 
 для МП 50 Ом ─ W=2.41 мм, длина выбирается из конструктивных соображений.  
λ
   для МП 70.7 Ом при электрической длине 
 получаем W=1 мм (ширина), L=19,94 
4  
мм (полная длина).  
 
Структура МП на верхней части подложки: 
 
6





 
 
 
 
модули коэффициентов передачи: 
 
 
модули коэффициентов отражения: 
 
фазы коэффициентов отражения и передачи: 
 
7


 
 
Как видно из графиков, полученная структура  удовлетворяет заданным требованиям. 
Также видно, что в МУ существует довольно сильная связь между портами 2 и 3. Это 
объясняется тем, что в структуре отсутствует навесное балластное сопротивление 100 Ом 
между портами 2 и 3. К сожалению, в программе MWO EMSight отсутствует возможность 
введения такого дополнительного элемента.  
 
На графике для 

. При таком значении от порта 
11
 отмечены точки со значениями  20dB
1 отражается 1% падающей мощности. Будем считать, что это границы полос пропускания 
моста. Полоса МУ на уровне -20 дБ по |S11| = 500 МГц 
 
 Определим центральную частоту как                                                                            
=
f
⋅ f
=
3
.
1 ⋅ 8
.
1 = 53
.
1
 ГГц 
0
min
max
Таким образом, мы можем считать, что вариант ЭД структуры удовлетворяет заданию. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8

2. Проектирование делителя (сумматора) мощности 
пополам (моста Уилкинсона) на основе сосредоточенных 
реактивных элементов 
 
2.1.  Анализ схемы МУ 
 
В  настоящее  время  в  распоряжении  разработчиков  СВЧ  устройств  имеются 
индуктивности  и  емкости  в  виде  "чипов"  ─  маленьких  кирпичиков,  противоположные 
торцы  которых  облужены  для  впаивания  в  структуру  проводников  печатной  платы. 
Номиналы  значений  индуктивностей    ─  от  единиц  нГн  до  сотен  мкГн,  емкостей  ─  от 
долей пФ до десятков нФ. Так как размеры этих элементов малы, то с их помощью можно 
реализовать  устройства,  рассчитанные  на  небольшую  мощность  (порядка  единиц  ватт). 
Эти элементы можно рассматривать как сосредоточенные, до частот порядка нескольких 
ГГц.  Таким  образом  вполне  реально  построение  МУ  на  сосредоточенных  элементах 
достаточно малых размеров.  
Рассчитаем  мостовой  делитель  мощности  на  два  (мост  Уилкинсона)  на 
центральную  частоту 1500 МГц  с  волновым  сопротивлением  линий,  питающих  порты, 
равным 50 Омам.  Очевидно,  что  для  реализации  МУ  нам  потребуется  две  одинаковые 
цепи типа ФНЧ с характеристическим сопротивлением   = 70.7  Ом и частотой f0 =1500 
МГц. 
R
1
=
,
=
ω
ω
 

0
R
L= 7,5 нГн,  С = 1,5 пФ (такие номиналы как раз есть в ряде Е24) 
 
Тогда схема МУ будет иметь вид, показанный на рис. 1. 
  
Рис. 1. Схема МУ на сосредоточенных элементах 
 
Использование  Т  схем  в  МУ  обусловлено  конструктивными  соображениями 
размещения элементов на печатной плате.  
 
 
 
 
 
 
 
 
9



2.2.  Расчет  МУ на сосредоточенных элементах 
 В пакете программ Microwave Office имеется программа Voltaire XL, предназначенная 
для анализа линейных цепей на сосредоточенных элементах. 
 
Схема МУ пакете Microwave Office: 
 
 
 
Модули S11 , S21 , S31 МУ на сосредоточенных элементах: 
 
 
Полоса МУ на уровне -20 дБ по |S11| = 251 МГц (50% от МУ на МП ЛП) 
 
 
 
10


Модуль   МУ на сосредоточенных элементах: 
23
 
 
Полоса МУ на уровне -20 дБ по |S23| = 361 МГц (72.2%) 
 
Из полученных графиков можно сделать вывод, что центральная частота полосы 
пропускания практически равна 1500 МГц и коэффициент деления мощности практически 
равен 0.5, следовательно, подстройки элементов не требуется.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11

                                   Заключение 
 
В  результате  проделанной  работы  был  рассчитан  делитель  мощности  пополам, 
обладающий  свойствами,  близкими  к  заданному  значению.  Анализ  его  параметров 
проводился в пакете программ MWО.  
На рабочей частоте 1.5 ГГц получены следующие значения модулей коэффициентов  S-
матрицы: 
 
для МУ на микрополосковых ЛП: 
 
              |S11|  = -26,875 дБ 
              |S21| = |S31|  = -3,05 дБ 
              |S33| = |S22|  = -6,4 дБ 
              |S23| = -5,74дБ 
               полоса МУ на уровне -20 дБ по |S11| = 500 МГц  
   центральная частота f0 = 1,53 ГГц 
 
для МУ на сосредоточенных элементах: 
 
              |S11|  = -67,33 дБ 
              |S21| = |S31|  = -3,01 дБ 
              |S23| = -70,34дБ 
 
               полоса МУ на уровне -20 дБ по |S11| = 251 МГц  
               полоса МУ на уровне -20 дБ по |S23| = 361 МГц  
   
Мощности, выделяемые в плечи 2 и 3, оказываются примерно равными -3 дБ, и можно 
сделать вывод, что был получен делитель мощности на 2. 
 
 
12

Document Outline

  • ! 
  • 0:;NG5=85 & & & & & & & & & & & & & & & & & & & & & & & & & & & &


 

А также другие работы, которые могут Вас заинтересовать

23654. Разработка графического интерфейса и базы данных каскадной системы регулирования температуры, расхода и концентрации в процессе ректификации стирола 3.53 MB
  Листинг программы unit Unit1; interface uses Windows Messages SysUtils Variants Classes Graphics Controls Forms Dialogs Grids ComCtrls ExtCtrls DBCtrls DBGrids StdCtrls Buttons DB DBTables ImgList ToolWin Mask TeEngine Series TeeProcs Chart DbChart Animate GIFCtrl; type TForm1 = classTForm PageControl1: TPageControl; TabSheet1: TTabSheet; TabSheet3: TTabSheet; PageControl2: TPageControl; TabSheet5: TTabSheet; DBNavigator1: TDBNavigator; DBGrid1: TDBGrid; BitBtn1: TBitBtn;...
23655. Управление качеством электронных средств 423 KB
  Непрерывной случайной величиной СВ называется величина которая при испытании может принять любое значение из заданного диапазона. Любое распределение характеризуется определенными характеристиками важнейшими из которых являются среднее значение и дисперсия. Несмещенной является оценка среднее значение которой совпадает со средним значением генерал ной совокупности. Здесь оценка истинное значение характеристики – оператор усреднения.
23656. Семантические сети 170 KB
  Семантические сети Семантической сетью является структура данных имеющая определенный смысл как сеть. Стандартного определения семантической сети не существует но обычно под ней подразумевают следующее: Семантическая сеть это система знаний имеющая определенный смысл в виде целостного образа сети узлы которой соответствуют понятиям и объектам а дуги отношениям между объектами. Следовательно всевозможные сети можно рассматривать как сети входящие в состав семантической сети. Поэтому в контексте знакомства с СОЗ семантические сети...
23657. Продукционные модели. ЕСЛИ - ТО (явление - реакция) 166 KB
  Эти две отличительные черты и определили широкое распространение методов представления знаний правилами. Программные средства оперирующие со знаниями представленными правилами получили название продукционных систем или систем продукции и впервые были предложены Постом в 1941 году. Общим для систем продукции является то что они состоят из трех элементов: Набор правил используемых как БЗ его еще называют базой правил; Рабочая память где хранятся предпосылки касающиеся отдельных задач а также результаты выводов получаемых на основе...
23658. Представление знаний с применением фреймов 143.5 KB
  Понятие фрейма и слота В сложных семантических сетях включающих множество понятий процесс обновления узлов и контроль связей между ними становится затруднительным. В каждом узле понятия определяются набором атрибутов и их значениями которые содержатся в слотах фрейма. Слот это атрибут связанный с узлом в системе основанной на фреймах. Слот является составляющей фрейма.
23659. Стратегии поиска в СОЗ 105.5 KB
  7 Начальныесостояния Цель конечные состояния Реализует возможность выбора Выполняет шаги от начального состояния к новым более близким к цели Исходные посылки и факты Поиск Стратегия поиска B A C C A B A B C A B C C B A B C A B A C C A B A B C C A B B A C A B C A C B 8. Стратегии поиска в СОЗ 8. Поиск в СОЗ Причем поиск конечного состояния выполняется автоматически на основе реализованной в СОЗ стратегии поиска которая: реализует возможность выбора; позволяет выполнять шаги от начального...
23660. Нечеткие множества в системах основанных на знаниях 462.5 KB
  Для ее решения вводится два показателя: П АiФ = sup min фu Aiu это возможность что нечеткое множество Ф принадлежит значению Аi атрибута Ã. Рассмотрим геометрическую интерпретацию определения ПА1Ф: min фu A1u – представляет собой треугольник SQR т. sup min фu A1u – это точка Q т. Тогда ПА1Ф = min {max 0 min 1 1 m1 m2 1 2 max 0 min 1 1 m2 m1 2 1 }.
23661. Основы построения систем основанных на знаниях (Соз) 68 KB
  Предположим нас интересует что имеет Иван: Запрос: имеет иван Вещь Ответ: Вещь = машина Если мы заполним базу еще рядом фактов имеет петр руб.500 имеет петр телевизор цена видео 4200 цена приемник 20 цена часы 70 тогда на аналогичный запрос но только относительно Петра мы получим ответ: Запрос: имеет петр Вещь Ответ: Вещь = часы Вещь = руб 500 Вещь = телевизор Заметим что имя петр мы вводим со строчной буквы так как это атом; а Вещь является переменной и записывается с заглавной буквы. Чтобы не...
23662. Экспертные системы. Назначения ЭС и основные требования к ним 78 KB
  Экспертные системы Система основанная на знаниях система программного обеспечения основными структурными элементами которой являются базы знаний и механизм логических выводов. Основными требованиями к ЭС являются: использование знаний связанно с конкретной предметной областью; приобретение знаний от эксперта; определение реальной и достаточно сложной задачи; наделение системы способностями эксперта. которые обладают общими качествами: имеют огромный багаж знаний о конкретной предметной области; имеют большой опыт работы в этой...