1494

Расчет привода электродвигателя

Практическая работа

Политология и государственное регулирование

Кинематический расчет привода и выбор электродвигателя. Расчет закрытой цилиндрической передачи. Коэффициент ширины зубчатого венца. Проверочный расчет на контактную выносливость. Проверочный расчет на изгибающую выносливость.

Русский

2013-01-06

94.53 KB

29 чел.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

Расчетно-графическая работа по ДМ

    Выполнил:

студент гр. МКС – 09

Каримов Р.Х.

         Проверил:  

к. т. н., доцент

                         Пяльченков В. А.

Тюмень 2011 г.

1.Кинематический расчет привода и выбор электродвигателя.

1.1.Выбор электродвигателя:

1) КПД привода:

- КПД ременной передачи

- КПД цилиндрической зубчатой передачи (закрытая)

- КПД подшипников качения (две пары)

2) Требуемая мощность электродвигателя:

3) Примерное общее передаточное число привода:

4) Примерная  частота вращения вала электродвигателя:

5) Ближайшая синхронная частота вращения вала электродвигателя

1000

6) Для данной синхронной частоты вращения вала электродвигателя и мощности подходит  тип электродвигателя 4А100L6У3

7) Частота вращения 1 вала по каталогу

 

1.2 Разбивка передаточного числа:

   8) Фактическое общее передаточное число привода.

9) Разбивка  по ступеням

                          

1.3 Определение параметров вращения валов привода

    10) Мощность на валах, Вт

На 1-м валу: P= 2,229 кВт = 2229 Вт

На 2-м валу: P= P =2229=2095,26 Вт

На 3-м валу: P= PВт

11)Числа оборотов вращения валов,    

1- го вала:   

2-го вала:    

3-го вала:    

12) Угловые скорости вращения валов,

1- го вала:

2-го вала:

3-го вала:

13)Крутящие моменты на валах,

На 1-м валу:

На 2-м валу:

На 3-м валу: ов:

 14)Таблица полученных данных:

Мощность Р, Вт

Число оборотов n,

Угловая скорость

Крутящий  момент Т,

1-й вал

P=2229

=960

=100,48

=22,183

2-й вал

P=2095,26

=240

=25,12

=83,410

3-й вал

P=2032,4

=60

=6,28

=23,630

2.Расчет закрытой цилиндрической передачи

     Исходные данные:

  1.  Мощность на ведущем валу
  2.  Частота вращения ведущего вала:
  3.  Передаточное число передачи:
  4.  Режим нагружения   

2.1.  Выбор материалов зубчатых колес и определение допускаемых    напряжений.

1.Материалы и термическая обработка зубчатых колес.

Шестерня – сталь 45, улучшение HB1=192…240, для расчёта

HB1=220

Колесо - сталь 45, нормализация HB1=170…217, для расчета HB1=200

2.Механические характеристики материала.

шестерня: предел прочности - в=750, сечение S  100 мм

         предел текучести   - т=450

колесо:     предел прочности - в=600, сечение S  80 мм

              предел текучести   - т=340

3.Предел контактной выносливости поверхности зубьев Hlim.

4.Коэффициент безопасности при расчете на контактную площадь.

SH1=1,1; SH2=1,1;

5.Коэффициент, учитывающий шероховатость сопряженных поверхностей   зубьев ZR при определении допускаемых контактных напряжений. Принимаем RA=1,8; ZR=0,95.

6.Коэффициент, учитывающий окружную скорость колес ZV.

Принимаем V=5 м/сек; ZV=1,0.

7.Коэффициент долговечности при расчете на контактную выносливость KHL.

Принимаем KHL1=KHL2=1

 8.Допускаемые контактные напряжения [H]1, [H]2

Принимаем H =423,18 МПа. 

 9.Предел выносливости зубьев по напряжениям изгиба Flim .

10.Коэффициент безопасности при расчете на изгиб SF.

Принимаем SF=1,75

 11.Коэффициент, учитывающий шероховатость переходной поверхности при расчете допускаемых напряжений изгиба YR.

Принимаем YR=1.

 12.Коэффициент, учитывающий влияние двухстороннего приложения нагрузки KFC=0,65

 13.Коэффициент долговечности при расчете на изгиб KFL.

Принимаем KFL1=KFL2=1

        14.Допускаемые напряжения изгиба [F]1, [F]2    

      ;

15.Предельные допускаемые контактные напряжения при кратковременных перегрузках [H]max1, [H]max2.

16.Предельные допускаемые напряжения изгиба при кратковременных перегрузках [F]max1, [F]max2.

2.2 Проектный расчёт.

       17. Крутящий момент на выходном валу, Т

 Т=83,410 H·м

 Т=22,183 Нм

 =100,48 H·м

       18.Коэффициент ширины зубчатого венца , относительно межосевого расстояния. Считаем, что колеса расположены симметрично относительно опор, поэтому =0,5.

   19.Коэффициент ширины зубчатого венца bd, относительно диаметра d1.

    20.Коэффициент концентрации нагрузки при расчёте на контактную   выносливость  КН =1,08.

    21.Вспомогательный коэффициент Ка.

    

22.Межосевое расстояние

 Принимаем

23.Ширина зубчатого венца bw1; bw2.

24.Окружной модуль зубьев mn

25.Угол наклона зубьев .

Принимаем β= 

26.Суммарное число зубьев Zc.

 Принимаем Zc=99;

27.Число зубьев ведущего колеса Z1.

Принимаем Z1=20

28.Число зубьев ведомого колеса Z2.

 Z2=Zc-Z1=99-20=79;

29.Фактическое передаточное число U.

Отличается от фактического на 1,25 % < 4%

 

30.Уточненное значение угла наклона зубьев .

 

 31.Диаметр делительной окружности ведущего колеса d1.

32.Диаметр делительной окружности ведомого колеса d2.

33.Окружная скорость колес V.

34.Степень точности изготовления передачи = 8.

2.3 Проверочный расчет на контактную выносливость.

35.Коэффициент, учитывающий механические свойства материала зубчатых колес ZМ.

36.Коэффициент, учитывающий форму сопряженных поверхностей.

 

37.Коэффициент, учитывающий длину контактной линии Zε.

38.Силы, действующие в зацеплении.

  Окружная сила:

    

             Радиальная сила:

 

               Осевая сила:

             

39.Коэффициент динамической нагрузки КHV.

       КHV=1,10;

40.Удельная расчетная окружная сила

41.Контактные напряжения при расчете на выносливость. 

        

 на 8,7%

2.4 Проверочный расчет на изгибающую выносливость.

42.Коэффициент формы зуба YF; X=0.

 YF1=4,09; YF2=3,61;

43.Коэффициент, учитывающий угол наклона зуба Y

44.Коэффициент, учитывающий многонарность зацепления Yε

45.Коэффициент концентрации нагрузки при расчете на изгиб.

 КF=1,13.

46.Коэффициент динамической нагрузки при расчете на изгиб.

 КFV=1,25.

47.Удельная расчетная окружная сила при расчете на изгиб Ft

48.Напряжение изгиба при расчете на выносливость.

 

2.5 Проверочный расчет на статическую прочность при перегрузках.

49. Максимальные контактные напряжения при перегрузке.

 50.Максимальные напряжения изгиба при перегрузках.

ЛИТЕРАТУРА

  1.  Устюгов И.И. Детали машин. – М.: Высшая школа. – 1981. 399с.
  2.  Дунаев П.Ф., Леликов О.П. Конструирование узлов и деталей машин- М.: Высшая школа. – 447с.
  3.  Курмаз Л.В., Скойбеда А.Т. Деталей машин. Проектирование. Справочное учебно-методическое  пособие. –М.: Высшая школа. – 2004. 383с.
  4.  Шейнблит А.Е., Детали машин.  Курсовое проектирование деталей машин. Янтарный сказ, 2004г.
  5.  Анурьев В.И., Справочник Конструктора машиностроителя в трех томах. Машиностроение, 2001г.

 

А также другие работы, которые могут Вас заинтересовать

13288. Моделирование работы пироэлектрического датчика в среде Electronics Workbench 367 KB
  Лабораторная работа №4 Моделирование работы пироэлектрического датчика в среде Electronics Workbench Цель исследования: Моделирование работы пироэлектрического датчика в среде Electronics Workbench и виртуальные измерения внешнего теплового потока заданного периодической пос
13289. Hands-On Lab Debugging Applications in Windows Azure 818.61 KB
  HandsOn Lab Debugging Applications in Windows Azure Contents Overview3 Exercise 1: Debugging an Application in the Cloud5 Task 1 Exploring the Fabrikam Insurance Application5 Task 2 Running the Application as a Windows Azure Project7 Task 3 Adding Tracing Support to the Application14 Task 4 Creating a Log Viewer Tool25 Verification33 Summary38 Overview Using Visual Studio you can debug applications in your local ...
13290. Автоматизация создания документов с помощью Visual Basic .NET 101.5 KB
  6. ЛАБОРАТОРНАЯ РАБОТА Автоматизация создания документов с помощью Visual Basic .NET 6.1. Цель работы: приобретение практических навыков автоматизации создания документов с помощью Visual Basic с использованием инструментальных средств интегрированной среды разработки Vis...
13291. ТЕХНОЛОГІЇ ПРОГРАМУВАННЯ 1.46 MB
  МЕТОДИЧНІ ВКАЗІВКИ до лабораторних робіт з дисципліни ТЕХНОЛОГІЇ ПРОГРАМУВАННЯ Методичні вказівки до лабораторних робіт з дисципліни Технології програмування для студентів напрямів 6.040302 Інформатика 6.040301 Прикладна математика / Упоряд. Кобилін О.А. Маш...
13292. ТЕХНОЛОГІЇ ПРОГРАМУВАННЯ. МЕТОДИЧНІ ВКАЗІВКИ ДО КУРСОВОГО ПРОЕКТУВАННЯ 666 KB
  МЕТОДИЧНІ ВКАЗІВКИ ДО КУРСОВОГО ПРОЕКТУВАННЯ З ДИСЦИПЛІНИ ТЕХНОЛОГІЇ ПРОГРАМУВАННЯ Методичні вказівки до курсового проектування з дисципліни Технології програмування для студентів напряму 6.040302 Інформатика /Упоряд.: Кобилін О.А. Руденко Д.О. Харкiв: ХНУРЕ ...
13293. Лабораторный практикум по механизации животноводства для студентов сельскохозяйственных высших учебных заведений инженерных специальностей 8.35 MB
  Лабораторный практикум по механизации животноводства для студентов сельскохозяйственных высших учебных заведений инженерных специальностей / В.К. Полянин В.Я. Спевак Р.А. Денисов Романов В книге рассмотрены устройство принцип действия техническое обслуживание р
13294. ЦСП ИКМ-480 611 KB
  ЦСП ИКМ480. Комплекс аппаратуры третичной ЦСП ИКМ480 предназначен для организации на внутризоновых и магистральной сетях связи пучков каналов по кабелю МКТ4 с парами 12/46 мм. Аппаратура обеспечивает организацию до 480 каналов ТЧ при скорости передачи группового потока 34 368...
13295. Принцип построения ЦСП 9.04 KB
  Принцип построения ЦСП В состав комплекса аппаратуры ИКМ30 входят аналогоцифровое оборудование АЦО оконечное оборудование линейного тракта ОЛТ необслуживаемый регенерационный пункт НРП и комплект контрольноэксплуатационных устройств содержащий пульты кон
13296. Формирование группового цифрового сигнала 45.85 KB
  Формирование группового цифрового сигнала передача телефонных сигналов по каналам ЦСП с ВРК осуществляется при использовании импульснокодовой модуляции ИКМ. В этом случае формирование группового цифрового сигнала предусматривает последовательное выполнение сле