151

Создание усилителя с обратной связью

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

В настоящее время трудно назвать такую отрасль, в которой в той или иной степени не применялась бы электроника. Космические и авиационные летательный аппараты, техника, все виды транспорта, медицина, атомная физика, машиностроение используют электронику во все нарастающих масштабах.

Русский

2012-11-14

614 KB

31 чел.

Министерство образования РФ

Рязанская Государственная Радиотехническая Академия

Кафедра САПР  Вычислительных Средств

Усилитель с обратной связью

Пояснительная записка

к  курсовой работе по курсу:

«Электротехника и электроника»

                                                                           

                                                                           Выполнил: студент гр.0410

                                                                                                                     Тишкин Р.В.

 Проверил:  доцент кафедры САПР ВС

                                                                                                                      Перепёлкин А.И. 

                               

Рязань 2012

ВВЕДЕНИЕ

Электронные приборы - устройства принцип действия которых основан на использовании явлений связанных с движущимися потоками заряженных частиц. В зависимости от того как происходит управление, электронные приборы делят на вакуумные, газоразрядные, полупроводниковые. В настоящее время трудно назвать такую отрасль, в которой в той или иной степени не применялась бы электроника. Космические и авиационные летательный аппараты, техника, все виды транспорта, медицина, атомная физика, машиностроение используют электронику во все нарастающих масштабах. Достижения электроники используют все телевизионные передатчики и приемники, аппараты для приема радиовещания, телеграфная аппаратура и квазиэлектронные АТС, аппаратура для междугородней связи.

Одним из наиболее важных применений электронных приборов является усиление электрических сигналов, т.е. увеличение их мощности, амплитуды тока или напряжения до заданной величины. В настоящее время усилительные устройства развиваются во многих направлениях, расширяется диапазон усиливаемых частот, выходная мощность. В развитии усилительных устройств широкие перспективы открывает применение интегральных микросхем.

В данной курсовой работе проводится проектирование многокаскадного усилителя переменного тока с обратной связью. При проектировании рассчитываются статические и динамические параметры усилителя, а затем проводится его моделирование на ЭВМ с использованием программного продукта MicroCap III. При моделировании усилителя производится корректировка его параметров.

  1.  ИСХОДНЫЕ  ДАННЫЕ

Вариант  № 20-30

Тип проводимости

UвхmмВ   

Rг  ,   Ом

Pн ,  Вт

Iн ,  мA

tomax ,  oC

f

MОСн(ω)

MОСв(ω)

fн , Гц

fв , КГц

p-n-p               p-канал

200

20

0.22

7

+ 65

65

65

0.76

0.76

2. РАСЧЕТНАЯ ЧАСТЬ

2.1. Расчет коэффициента усиления напряжения усилителя

Вычислим амплитудное значение напряжения на выходе:

, 

По известным значениям Uнm и Uвхm рассчитываем Koc 

Усилителю с отрицательной обратной связью соответствует коэффициент передачи:

.           (1) .

Определим число каскадов усилителя.

Пусть число каскадов равно 1 (n = 1):

,  ,

где Mос() - коэффициент частоты каскадов .

Из этой формулы составим квадратное уравнение, и решим его относительно K.    , тогда  получим корни  , выбираем отрицательный корень , и подставляем в уравнение (1),

,т.е. одного каскада будет не достаточно.

Пусть число каскадов усилителя равно 2 (n = 2):

,

Из этой формулы составим квадратное уравнение, и решим его относительно K

тогда из полученных корней выбираем отрицательный , и подставляем в уравнении  (1), т. е. двух каскадов тоже будет не достаточно.

Пусть число каскадов усилителя равно 3 (n = 3):

,

Из этой формулы составим квадратное уравнение, и решим его относительно K

тогда из полученных корней выбираем отрицательный , и подставляем в уравнение (1),  т.е. усилитель может быть реализован на трех каскадах.

                    2.2. Расчет элементов выходного каскада

2.2.1. Выбор рабочей точки транзистора

Выбор рабочей точки А транзистора в режиме покоя, когда входной сигнал отсутствует, сводится к выбору тока коллектора IкА и напряжения UкэA в схеме рис.1, в первоначальном предположении Rэ= 0. т.е. при заземленном эмиттере.

Точку покоя выберем исходя из заданных значений амплитуды напряжения на коллекторе UНМ и тока коллектора IНМ, которые по заданным значениям UН и IН определяются как UНМ=UН = 44.4 [В] и IНМ=IН.= = 0.0098 [А].

Определим вид транзистора :

PК= UНМ IНМ =0.43[Вт], транзистор средней мощности.

Определим напряжение UКЭА из выражения:

=46.4[В], (для транзисторов средней мощности UЗАП = (22.5)[В])

  где KЗ–коэффициент запаса равный (0.70.95)

                                           Рис.1. Схема усилительного каскада

ЕП=2UКЭА=92.88[B]

Сопротивление  RK  находим  как:   

Сопротивление  RЭ  вычисляется:

Считаем, что на вход подается какой-либо переменный сигнал, тогда для переменного сигнала параллельно  включается . Для переменного сигнала будет идти по какой-либо другой динамической линии нагрузки. Она будет обязательно проходить через А.       

Поэтому строим динамическую линию нагрузки.

Через точку А проводим линию динамической нагрузки, под углом .

;  ;

где KM=1000 масштабный коэффициент.

Выбирая значения  EП  из стандартного ряда, тем самым изменяя положение динамической линии нагрузки, проверяем  условие. В нашем случае условие выполнилось при EП=100[B].

2.2.2. Расчет элементов фиксации рабочей точки

Фиксация рабочей точки A каскада на биполярном транзисторе (рис. 1) осуществляется резистивным делителем R1 , R2 . Выберем такой транзистор, у которого  и . В нашем случае таким транзистором может быть транзистор КТ814Г.

Из положения рабочей точки и выходных характеристик транзистора, рассчитаем величину дифференциального коэффициента передачи тока базы :

                                      

где IК,IБ –окрестность рабочей точки А

Найдем ток IБА :

                    

По входным характеристикам транзистора определим величину UБЭА =0,75[B]    

Так же из входной характеристики находим входное дифференциальное сопротивление транзистора h11Э:

                       

Рассчитаем величину  по следующему эмпирическому соотношению: , где - тепловой ток коллекторного перехода, заданный в справочнике при температуре t0 ; А = 2,5 для кремниевых транзисторов.  вычислим как  , выберем . Рекомендуемое значение N вычисленное как

;

Вычислим R1,R2 :

где

Корректность расчета оценим вычислением тока Iдел, причем необходимо соблюдение неравенства . Вычислим Iдел по формуле:

       

Полученное значение удовлетворяет соотношению

Найдем сопротивление резистивного делителя:

Найдем входное сопротивление данного каскада

.

2.2.3 Расчет емкостных элементов усилительных каскада

Для каскадов на биполярном транзисторе (рис.1) значение емкостей конденсаторов C1 ,

C2 , C3 рассчитаем по следующим формулам:

;

;

;

2.2.4 Расчет коэффициента усиления напряжения каскада:

Определим выходные параметры для промежуточного каскада:

 

                      2.3. Расчет элементов промежуточного каскада

2.3.1. Выбор рабочей точки транзистора

Выбор рабочей точки А транзистора в режиме покоя, когда входной сигнал отсутствует, сводится к выбору тока коллектора IкА и напряжения UкэA в первоначальном предположении Rэ= 0. т.е. при заземленном эмиттере.

Точку покоя выберем исходя из заданных значений амплитуды напряжения на коллекторе UНМ и тока коллектора IНМ, которые по заданным значениям UН и IН определяются как UНМ=UН = 1.05 [В] и IНМ=IН.== 0.0008 [А].

Определим вид транзистора :

PК= UНМ IНМ =0.84[мВт], значит транзистор малой мощности

Определим напряжение UКЭА из выражения:

=3.55[В], (для транзисторов малой мощности UЗАП = (12.5)[В])

  где KЗ–коэффициент запаса равный (0.70.95)

ЕП=2UКЭА=7,1[B]

Сопротивление  RK  находим  как:

Сопротивление  RЭ  вычисляется:

Считаем, что на вход подается какой-либо переменный сигнал, тогда для переменного сигнала параллельно  включается . Для переменного сигнала будет идти по какой-либо другой динамической линии нагрузки. Она будет обязательно проходить через А. Поэтому строим динамическую линию нагрузки.

Через точку А проводим линию динамической нагрузки, под углом .

;  ;

где KM=1000 масштабный коэффициент

Выбирая значения  EП  из стандартного ряда, тем самым изменяя положение динамической линии нагрузки, проверяем  условие. В нашем случае условие выполнилось при EП=10[B].

2.3.2. Расчет элементов фиксации рабочей точки

Фиксация рабочей точки A каскада на биполярном транзисторе (рис. 1) осуществляется резистивным делителем R1 , R2 . Выберем такой транзистор, у которого  и . В данном случае таким транзистором может быть транзистор КТ209A.

Из положения рабочей точки и выходных характеристик транзистора, рассчитаем величину дифференциального коэффициента передачи тока базы :

                                      

где IК,IБ –окрестность рабочей точки А

Найдем ток IБА :

                    

 По входным характеристикам транзистора определим величину UБЭА =0,71[B]    

Так же из входной характеристики находим входное дифференциальное сопротивление транзистора h11Э:

                       

Рассчитаем величину  по следующему эмпирическому соотношению: , где - тепловой ток коллекторного перехода, заданный в справочнике при температуре t0 ; А = 2,5 для кремниевых транзисторов.  вычислим как  , выберем .

Рекомендуемое значение N вычисленное как

;

Вычислим R1,R2 :

где

Корректность расчета оценим вычислением тока Iдел, причем необходимо соблюдение неравенства . Вычислим Iдел по формуле:

       

Полученное значение удовлетворяет соотношению

Найдем сопротивление резистивного делителя:

Найдем входное сопротивление данного каскада

.

2.3.3 Расчет емкостных элементов усилительных каскада

Для каскадов на биполярном транзисторе (рис.1) значение емкостей конденсаторов C1 ,

C2 , C3 рассчитаем по следующим формулам:

;

;

;

2.3.4 Расчет коэффициента усиления напряжения каскада :

Определим выходные параметры для входного каскада:

                          2.4. Расчет элементов входного каскада

2.4.1. Выбор рабочей точки транзистора

Выбор рабочей точки А транзистора в режиме покоя, когда входной сигнал отсутствует, сводится к выбору тока коллектора IкА и напряжения UкэA  в первоначальном предположении Rэ= 0. т.е. при заземленном эмиттере.

Точку покоя выберем исходя из заданных значений амплитуды напряжения на коллекторе UНМ и тока коллектора IНМ, которые по заданным значениям UН и IН определяются как UНМ=UН = 0.11 [В] и IНМ=IН.= 0.00012 [А].

Определим вид транзистора :

PК= UНМ IНМ =0.013[мВт], транзистор малой мощности

Определим напряжение UКЭА из выражения:

=2.61[В], (для транзисторов малой мощности UЗАП = (12.5)[В])

  где KЗ–коэффициент запаса равный (0.70.95)

ЕП=2UКЭА=5.22[B]

Сопротивление  RK  находим  как:

Сопротивление  RЭ  вычисляется:

Считаем, что на вход подается какой-либо переменный сигнал, тогда для переменного сигнала параллельно  включается . Для переменного сигнала будет идти по какой-либо другой динамической линии нагрузки. Она будет обязательно проходить через А. Поэтому строим динамическую линию нагрузки.

Через точку А проводим линию динамической нагрузки, под углом .

;  ;

где KM=10000 масштабный коэффициент

Выбирая значения  EП  из стандартного ряда, тем самым изменяя положение динамической линии нагрузки, проверяем  условие. В нашем случае условие выполнилось при EП=6.3[B].

2.4.2. Расчет элементов фиксации рабочей точки

Фиксация рабочей точки A каскада на биполярном транзисторе (рис. 1) осуществляется резистивным делителем R1 , R2 . Выберем такой транзистор, у которого  и . В данном случае таким транзистором может быть транзистор КТ209A.

Из положения рабочей точки и выходных характеристик транзистора, рассчитаем величину дифференциального коэффициента передачи тока базы :

                                      

где IК,IБ –окрестность рабочей точки А

Найдем ток IБА :

                    

 По входным характеристикам транзистора определим величину UБЭА =0,55[B]    

Так же из входной характеристики находим входное дифференциальное сопротивление транзистора h11Э:

                       

Рассчитаем величину  по следующему эмпирическому соотношению: , где - тепловой ток коллекторного перехода, заданный в справочнике при температуре t0 ; А = 2,5 для кремниевых транзисторов.  вычислим как  , выберем .

Рекомендуемое значение N вычисленное как ;

Вычислим R1, R2 :

где

Корректность расчета оценим вычислением тока Iдел, причем необходимо соблюдение неравенства . Вычислим Iдел по формуле:

       

Полученное значение удовлетворяет соотношению

Найдем сопротивление резистивного делителя:

Найдем входное сопротивление данного каскада

.

2.4.3 Расчет емкостных элементов усилительных каскада

Для каскадов на биполярном транзисторе (рис.1) значение емкостей конденсаторов C1 ,

C2 , C3 рассчитаем по следующим формулам:

;

;

;

2.4.4 Расчет коэффициента усиления напряжения каскада:

                          2.5. Расчет элементов цепи ООС

По вычисленным в п. 2.1. значениям  и  рассчитаем величину   

.

Найдем величину сопротивления обратной связи из следующего соотношения:

;

;

RОС = 77160 [Ом].

         2.6. Расчет коэффициента усиления напряжения усилителя

Рассчитываемый коэффициент усиления всего усилителя равен произведению коэффициентов. усиления всех трех каскадов:

Что превышает необходимое 222.

                                     3. Моделирование.

Моделирование будем выполнять с помощью пакета схемотехнического моделирования Micro-Cap 3. В результате моделирования получим переходные и частотные характеристики как отдельных каскадов усилителя, так и всей структуры в целом. Целью моделирования является установление корректности расчета и степени соответствия расчетных параметров требованиям технического задания.

3.1. Корректировка схемы и определение ее параметров

Для получения результатов, определяемых исходными данными, произведем корректировку значений сопротивлений резисторов и емкостей конденсаторов усилителя. Полученные после корректировки значения приведены в спецификации (см. Приложения).

По графикам АЧХ и ФЧХ, полученным в результате моделирования определим значения K.

Реально достигнутый коэффициент K найдем из графика переходной характеристики:

а) для усилителя без обратной связи

   K=307.6

б) для усилителя с обратной связью

K=300

Заключение.

В результате выполнения данной курсовой работы были изучены методы проектирования и разработки электронных устройств в соответствии с данными технического задания. Был произведён расчёт статических  и динамических параметров электронных устройств. А также было изучено практическое применение ЭВМ для схемотехнического проектирования электронных устройств. Для моделирования был использован пакет схемотехнического моделирования Micro-Cap 3. В ходе курсового проектирования было проведено моделирование усилителя в частотной и временной областях.

Библиографический список:

1.Баскакова И.В.,Перепёлкин А.И. Усилительные устройства:Методические указания к курсовой работе.-Рязань,РГРТА,1997.36с.

2.Транзисторы для аппаратуры широкого применения:  Справочник. К.М.Брежнева,Е.И.Гантман,Т.И        Давыдова и др. Под ред. Б.Л.Перельмана.-М.:Радио и

связь,1982.656с.

3.Транзисторы.Справочник.Издание 3-е. Под редакцией         И.Ф.Николаевского.-М.:Связь,1969.624 с.

4.Анализ электронных схем. Методические указания к                                                                                                        лабораторным и практическим занятиям. Баскакова И.В.,Перепёлкин А.И. Р.:2000,32 с.


                                  
Приложения

Моделирование выходного каскада

 Kuреальный ≈25

Моделирование промежуточного каскада

Kuреальный ≈7.6

Моделирование входного каскада

Kuреальный ≈2.5

Моделирование усилителя без ООС

Kuреальный ≈307.6

Моделирование усилителя с ООС

Kuреальный ≈300


 

А также другие работы, которые могут Вас заинтересовать

27987. Условия возникновения эмоций, критерии эмоционального 57.04 KB
  Соответствуют основным потребностям человека возникли на более раннем этапе эволюции их роль чтобы организм приспособился к некой деятельности. Не зависят от успешности деятельности. связаны не только с потребностями но и с успехом неуспехом деятельности. Вторичные: отчаяние печаль раскаяние производные чувства связаны не только с отражением деятельности но и с предвидением.
27988. Теория когнитивного диссонанса Л. Фестингера. Основные положения теории жизненных циклов организации 45.45 KB
  Основные положения теории жизненных циклов организации. относилось к организации деятельности группы к процессу управления ею. Считается что лидер осуществляет регуляцию межличностных отношений в группе руководитель официальных отношений группы как некоей социальной организации; лидерство можно констатировать в условиях микросреды малая группа руководство элемент макросреды; лидерство возникает стихийно процесс назначения руководителя не является стихийным; по сравнению с руководством лидерство...
27989. Структура и виды волевых процессов. Основные положения трансактного анализа Э.Берна. Использование концепции РВД в консультативно-тренинговой деятельности 24.31 KB
  Штайнера которая предлагала формулу вычисления продуктивности индивида в связи с эффективностью руководителя но может быть использована и для анализа продуктивности группы. Более точно производительность группы людей работа которых характеризуется взаимной зависимостью есть функция взаимодействия между уважением лидера к его наименее предпочитаемому сотруднику НПС и ситуационными переменными отношения между руководителем и членами коллектива структура задачи должностные полномочия объем законной власти руководителя. Модель Фидлера...
27990. Биогенная нагрузка на агроэкосистему и ее снижение с помощью противоэрозийных инженерно-биологических систем 3.22 KB
  друг с другом и с ОС система приобретает свойства способствующие достижению устойчивости и продуктивности агроландшафта а также охране природы такие системы называют противоэрозионными инженернобиологическими системами водосборов ПИБС. По категориям сложности ПИБС бывают простыми с ложными. Сложные ПИБС подразделяются на определенное число подсистем подсистемы на пахотных природораздельных землях в звеньях гидрографической сети в водоохранных зонах рек и др. Состав формирующихся ПИБС водосборов...
27991. Направления природоохранной деятельности в системе агропромышленного комплекса 2.98 KB
  Алгоритм реализации природоохранной деятельности: 1 природноэкономические особенности хозяйства; 2 прогноз антропогенных изменений природного комплекса и их влияния на развитие хозяйства; 3 система мер комплексной охраны природы на территории хозяйства. Система мер охраны природы на территории хозяйства: сохранение и создание зеленых насаждений в населенных пунктах вдоль рек дорог постройка очистных сооружений предотвращение смыва удобрений в водоемы меры по экономному использованию земель под...
27992. Оптимизация аграрного производства. Баланс биогенных веществ и агробиоценозов 4.71 KB
  Для успешного функционирования данная форма земледелия должна быть дополнена организационными ландшафтноструктурными и законодательными отношениями направленными на создание благоприятных условий хозяйствам решившим перейти на экологическую форму. А именно: обеспечением финансовой поддержки для приобретения необходимого инвентаря биологических средств защиты растений и компенсации потери урожайности в переходный период; оказанием помощи в разработке правовой и нормативной документации и регламентов сертификации...
27993. Оптимизация использования минеральных удобрений и химических средств повышения плодородия 6.59 KB
  Применение органических и минеральных удобрений одно из основных условий повышения урожайности сельскохозяйственных культур а также важное звено технологий их выращивания. Использование удобрений особенно органических позволяет возвращать и вовлекать в круговорот питательные вещества взамен изъятых из агроценозов с основной и побочной продукцией обеспечивая таким образом определенную устойчивость продукционных процессов. Основными причинами загрязнения окружающей среды удобрениями считают несовершенство...
27994. Оптимизация ландшафта с х территорий, как фактор повышения устойчивости агроэкосистем 10.68 KB
  Агроландшафты являются целостными генетически однородными пространственновременными единицами несмотря на то что определенная часть их естественного растительного покрова замена агроценозами Целевая установка сельского хозяйства объективно направлена на получение максимума биологической продукции. Важное условие экологизации сельского хозяйства использование биоценологических экосистемных принципов. В противном случае несоответствие сложившейся специализации сельского хозяйства потенциальным...
27995. Основные виды токсикантов, содержащиеся в пищевых продуктах, тяжелые металлы, остаточное каличество пестицидов, нитриты, радиоактивные элементы, действие токсикантов на человека и теплокровных животных 20.2 KB
  Отравления вызванные живыми микробами попавшими в организм с пищей называют пищевыми токсикоинфекциями. Это сальмонелла кишечная палочка и условно патогенные микроорганизмы. При этих заболеваниях образование микроорганизмами яда токсина происходит в организме. Токсическое действие некоторых соединений на организм человека заключается в способности токсических веществ вызывать отравление организма выражающееся в различных клинико анатомических проявлениях.