15248

Схемотехника диодно-транзисторной логики (ДТЛ), резистивно-транзисторной логики (РТЛ) и транзисторно- транзисторной логики. Мультивибраторы. Исследование работы ЦАП и АЦП

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лабораторный практикум № 3 по курсу Электротехника и электроника часть 2 на тему Схемотехника диоднотранзисторной логики ДТЛ резистивнотранзисторной логики РТЛ и транзисторно транзисторной логики. Мультивибраторы. Исследование работы ЦАП и АЦП. В...

Русский

2013-06-11

897.39 KB

43 чел.

Лабораторный практикум № 3

по курсу « Электротехника и электроника, часть 2 »

на тему

«Схемотехника диодно-транзисторной логики (ДТЛ), резистивно-транзисторной логики (РТЛ) и транзисторно- транзисторной логики. Мультивибраторы.

Исследование работы ЦАП и АЦП

Вариант № 9

СОДЕРЖАНИЕ

Аннотация……………………………………………………………………………………………...3

  1.Исследование резистивно-транзисторной логики …………………………………….........4

1.1 Исследование резистивно-транзисторной логики в Micro-Cup 9……………………………...4

1.2 Исследование  резистивно -транзисторной логики в Multisim………………………………....7

  2.Исследование диодно-транзисторной логики …………………………………….................9

2.1 Исследование диодно-транзисторной логики в Micro-Cup 9…………………………………..9

2.2 Исследование  диодно-транзисторной логики в Multisim……………………………………..12

  3.Исследование транзисторно-транзисторной логики …………………………....................13

3.1 Исследование транзисторно-транзисторной логики в Micro-Cup 9…………………………...13

3.2 Исследование  транзисторно-транзисторной логики в Multisim………………………………17

  4.Исследование работы ЦАП и АЦП……………………………………………………………19

Выводы……………………………………………………………….……………….…....................23

Использованная литература……………………………………………………………………….23


Аннотация

Данный отчет посвящен выполнению лабораторного практикума с использованием программных средств Micro-Cap 9, Multisim и MathCAD 15.

В данной работе проводится исследование схемотехники диодно-транзисторной логики (ДТЛ), резистивно-транзисторной логики (РТЛ) и транзисторно- транзисторной логики и исследование работы ЦАП и АЦП.

В работе изучаются:

  1. временные анализы диодно-транзисторной логики (ДТЛ), резистивно-транзисторной логики (РТЛ) и транзисторно- транзисторной логики.
  2. моделирование лабораторных исследований в программах схемотехнического моделирования
  3.  работа ЦАП и АЦП.

1.Исследование резистивно-транзисторной логики.

1 .1 Исследование резистивно-транзисторной логики в Micro-Cup 9.

Проводом исследование резистивно-транзисторной логики, в соответствии со схемой, указанной на рисунке 1.

Рис.1

Транзистор для схемы выбрать в соответствии правилом, номер варианта определяет номер в списке группы.

.MODEL KT315L                NPN(IS=10E-15 ISE=100NA NE=4 ISC=100NA NC=4 BF=50

+                            IKF=.05A VAF=80 CJC=7PF CJE=7PF RB=3 RE=.5 RC=.2

+                            TF=0.8NS TR=170NS KF=4E-15 AF=1)

Приводим временные диаграммы работы схемы с параметрами сигнала, указанного на рисунке 2. В качестве источника сигнала в схеме используем генератор, настройка которого представлена там же.

Рисунок 2

Временную задержку между импульсами первого и второго генератора устанавливаем равную половине длительности импульса.

Для проведения временного анализа пользуемся командой Анализ-Анализ переходных процессов(Transient).Задаем необходимые параметры и получаем графики, указанные на рис. 3

Рисунок 3

Теперь исследуем логическую схему на реакции ее транзисторов при изменении подаваемого напряжения(Dinamic DC):

Получили ряд возможных реакций. Составим таблицу истинности:

Q1

Q2

OFF

OFF

OFF

ON

ON

OFF

ON

ON

1.2 Исследование резистивно-транзисторной логики в Multisim.

Проводом исследование резистивно-транзисторной логики, в соответствии со схемой, указанной на рисунке 3.

Рисунок 4.

Параметры, используемого в схеме транзистора:

.MODEL 2N3055A  npn

+IS=3.41639e-13 BF=405.26 NF=1.03507 VAF=120.176

+IKF=10 ISE=8.44498e-12 NE=3.47601 BR=0.1

+NR=1.04536 VAR=1.10398 IKR=2.5029 ISC=5.50017e-13

Приводим временные диаграммы работы схемы с параметрами сигнала, указанного на рисунке 4. В качестве источника сигнала в схеме используем генератор, настройка которого представлена там же.

Рисунок 5

Временную задержку между импульсами первого и второго генератора устанавливаем равную половине длительности импульса.

Для проведения временного анализа пользуемся командой Simulate-Analyses- Transient Analysis. Задаем необходимые параметры и получаем графики, указанные ниже.

Результаты, полученные в обеих программах получились идентичными. Исходя из сравнения результатов с таблицей истинности для данноц схемы можем сделать вывод.

Вывод:

РТЛ-элемент выполняет функцию ИЛИ-НЕ в позитивной логике или И-НЕ в негативной. Относительно низкоомное базовое сопротивление обеспечивает полное открывание транзисторов при малом потреблении тока, что однако приводит к малой нагрузочной способности элемента.

2.Исследование диодно-транзисторной логики

2.1 Исследование диодно-транзисторной логики в Micro-Cup 9

Проводоим исследование диодно-транзисторной логики, в соответствии со схемой, указанной  на рисунке 5.

Рисунок 6

Транзистор для схемы выбирается в соответствии с частью 1 задания, аналогично и диод выбирается согласно варианту задания первого практикума.

Параметры диода:

.MODEL 1N626 D (IS=4.779844n N=1.775744 BV=50 IBV=100.000001p RS=869.743314m

+ TT=1.442695u CJO=1.73058p VJ=14.999651 M=816.137774m RL=1.915652G)

Привести временные диаграммы работы схемы с параметрами сигнала, указанного на рисунке 2 пункта 1.1. Временную задержку между импульсами первого и второго генератора установить равную половине длительности импульса.

Для проведения временного анализа пользуемся командой Анализ-Анализ переходных процессов (Transient). Задаем необходимые параметры и получаем графики, указанные ниже.

Теперь исследуем логическую схему на реакции ее транзисторов при изменении подаваемого напряжения(Dinamic DC):

Получили ряд возможных реакций. Составим таблицу истинности:

 

D1

D2

D3

D4

Q1

ON

ON

OFF

OFF

OFF

ON

OFF

OFF

OFF

OFF

OFF

ON

OFF

OFF

OFF

OFF

OFF

OFF

ON

ON

2.2 Исследование диодно-транзисторной логики в Multisim.

Проводом исследование диодно-транзисторной логики, в соответствии со схемой, указанной на рисунке 7.

Рисунок 7.

Параметры, используемого в схеме диода:

.MODEL      1DH62 D

+ IS=5.950e-006 N=4.031e+000 RS=2.677e-002

+ BV=2.400e+002

+ EG=1.110e+000 XTI=3.000e+000 TT=5.760e-007

+ FC=5.000e-001 KF=0.000e+000 AF=1.000e+000

Приводим временные диаграммы работы схемы с параметрами сигнала, аналогичным предыдущему пункту.

Временную задержку между импульсами первого и второго генератора устанавливаем равную половине длительности импульса.

Для проведения временного анализа пользуемся командой Simulate-Analyses- Transient Analysis. Задаем необходимые параметры(рисунок 7) и получаем графики, указанные ниже.

Рисунок 7.

Результаты, полученные в обеих программах получились идентичными. Исходя из сравнения результатов с таблицей истинности для данноц схемы можем сделать вывод.

Вывод:

ДТЛ-элемент выполняет функцию И-НЕ. Низкий уровень на любом из входов («0») приводит к закрытию транзистора, то есть высокому уровню на выходе («1»). Транзистор открыт только тогда, когда на каждый из входов подается высокий уровень.

3.Исследование транзисторно-транзисторной логики.

3 .1 Исследование транзисторно-транзисторной логики в Micro-Cup 9.

Проводом исследование транзисторно-транзисторной логики, в соответствии со схемой, указанной на рисунке 8.

Рис.8

Транзистор для схемы выбрать в соответствии правилом, номер варианта определяет номер в списке группы.

.MODEL KT315L                NPN(IS=10E-15 ISE=100NA NE=4 ISC=100NA NC=4 BF=50

+                            IKF=.05A VAF=80 CJC=7PF CJE=7PF RB=3 RE=.5 RC=.2

+                            TF=0.8NS TR=170NS KF=4E-15 AF=1)

Приводим временные диаграммы работы схемы с параметрами сигнала, указанного на рисунке 2. В качестве источника сигнала в схеме используем генератор, настройка которого представлена там же.

Рисунок 2

Временную задержку между импульсами первого и второго генератора устанавливаем равную половине длительности импульса.

Для проведения временного анализа пользуемся командой Анализ-Анализ переходных процессов(Transient).Задаем необходимые параметры и получаем графики, указанные ниже.

Теперь исследуем логическую схему на реакции ее транзисторов при изменении подаваемого напряжения(Dinamic DC):

Получили ряд возможных реакций. Составим таблицу истинности:

Q1a

Q1b

D1

D2

Q2

ON

ON

OFF

OFF

OFF

ON

OFF

OFF

OFF

OFF

OFF

ON

OFF

OFF

OFF

OFF

OFF

ON

ON

ON

1.2 Исследование транзисторно-транзисторной логики в Multisim.

Проводом исследование транзисторно-транзисторной логики, в соответствии со схемой, указанной на рисунке 9.

Рисунок 9.

Параметры, используемого в схеме транзистора:

.MODEL 2N3055A  npn

+IS=3.41639e-13 BF=405.26 NF=1.03507 VAF=120.176

+IKF=10 ISE=8.44498e-12 NE=3.47601 BR=0.1

+NR=1.04536 VAR=1.10398 IKR=2.5029 ISC=5.50017e-13

Временную задержку между импульсами первого и второго генератора устанавливаем равную половине длительности импульса.

Для проведения временного анализа пользуемся командой Simulate-Analyses- Transient Analysis. Задаем необходимые параметры и получаем графики, указанные ниже.

Результаты, полученные в обеих программах получились идентичными. Исходя из сравнения результатов с таблицей истинности для данноц схемы можем сделать вывод.

Вывод:

ТТЛ-элемент выполняет функцию И-НЕ. Как более эффективная технология, она устраняет проблему задержки прохождения сигнала. Данная проблема решена путем замены диодов на мультиэмиттерный транзистор, что позволяет добиться более плотной схемы.

4.Исследование ЦАП  и АЦП в Мultisim.

Схема:

Аналоговый сигнал является непрерывной функцией времени, в АЦП он преобразуется в последовательность цифровых значений. Следовательно, необходимо определить частоту выборки цифровых значений из аналогового сигнала. Частота, с которой производятся цифровые значения, получила название частота дискретизации АЦП.

Непрерывно меняющийся сигнал с ограниченной спектральной полосой подвергается оцифровке (то есть значения сигнала измеряются через интервал времени T — период дискретизации) и исходный сигнал может быть точно восстановлен из дискретных во времени значений путём интерполяции. Точность восстановления ограничена ошибкой квантования. Однако в соответствии с теоремой Котельникова-Шеннона точное восстановление возможно только если частота дискретизации выше, чем удвоенная максимальная частота в спектре сигнала.

Поскольку реальные АЦП не могут произвести аналого-цифровое преобразование мгновенно, входное аналоговое значение должно удерживаться постоянным по крайней мере от начала до конца процесса преобразования (этот интервал времени называют время преобразования). Эта задача решается путём использования специальной схемы на входе АЦП — устройства выборки-хранения — УВХ. УВХ, как правило, хранит входное напряжение на конденсаторе, который соединён со входом через аналоговый ключ: при замыкании ключа происходит выборка входного сигнала (конденсатор заряжается до входного напряжения), при размыкании — хранение. Многие АЦП, выполненные в виде интегральных микросхем содержат встроенное УВХ.

В моем случае получается примерно 4762Гц. Вычислено из периода с учетом 8 разряда.

Точность:

Имеется несколько источников погрешности АЦП. Ошибки квантования и (считая, что АЦП должен быть линейным) нелинейности присущи любому аналого-цифровому преобразованию. Кроме того, существуют так называемые апертурные ошибки которые являются следствием джиттера (англ. jitter) тактового генератора, они проявляются при преобразовании сигнала в целом (а не одного отсчёта).

Эти ошибки измеряются в единицах, называемых МЗР — младший значащий разряд. В приведённом выше примере 8-битного двоичного АЦП ошибка в 1 МЗР составляет 1/256 от полного диапазона сигнала, то есть 0,4 %, в 5-ти тритном троичном АЦП ошибка в 1 МЗР составляет 1/243 от полного диапазона сигнала, то есть 0,412 %, в 8-тритном троичном АЦП ошибка в 1 МЗР составляет 1/6561, то есть 0,015 %

1.Характеристика:

Так как отсутствует фильтр – ступеньки. Вниз характеристика не идет, так как отрицтельные значения вольт измерить нельзя.

2.Для их измерения можно включить в схему операционный усилитель или диодный мост, что приведет к смещению характеристик вверх.

Или можно:

3.При увеличении получаем большие искажения:

При уменьшении наоборот:

Вывод.

Были изучены устройства логических цепей, их использование, методы анализа и снятия характеристик. Была изучена работа с АЦП и ЦАП и их анализи их в MultiSim. Изучены новые возможности пакетов программ MultiSim и MicroCap.

Использованная литература:

-учебные материалы по курсу «Электротехника и электроника, часть 2»;

-лекции по курсу «Электротехника и электроника, часть 2» Загидуллина Равиля Шамильевича;


 

А также другие работы, которые могут Вас заинтересовать

32713. ПРОБЛЕМЫ ЭКОЛГИЗАЦИИ ТЕХНОЛОГИИ В НЕФТЕПЕРЕРАБОТКЕ 104 KB
  Вначале человек не задумывался о том, что таит в себе интенсивная добыча нефти и газа. Главным было выкачать их как можно больше. Так и поступали. Но вот в начале 40-х гг. текущего столетия появились первые настораживающие симптомы.
32714. ПРОБЛЕМЫ ОБЕСПЕЧЕНИЯ БАНКОВСКИХ КРЕДИТОВ И ПУТИ РАЗВИТИЯ ФОРМ ВОЗВРАТНОСТИ КРЕДИТА 670.5 KB
  Рассмотреть наиболее часто используемые формы обеспечения возвратности кредитов: залог, уступка требований (цессия) и передача права собственности, гарантии и поручительства и др.; на примере ОАО «Сбербанк» получить представление о возможностях банка по возврату кредитов.
32715. ЭКОНОМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПАССАЖИРООБОРОТА ЖЕЛЕЗНОДОРОЖНЫХ ПЕРЕВОЗОК ОТ ДЛИНЫ ДОРОГИ 336 KB
  В конце прошлого столетия разработаны и широко применяется для решения большого числа практических задач экономики математические модели, в основу которых положены уравнения регрессии. В настоящей курсовой работе стоит задача обосновать математическую модель пассажирооборота железнодорожных перевозок
32716. Сердечные гликозиды, Механизм кардиотонического действия 94 KB
  Сердечные гликозиды вещества растительного происхождения которые оказывают высокоизбирательное кардиотоническое действие. Исследования зависимости между структурой и действием этих средств показали что лактонное кольцо и стероидное ядро в равной мере необходимы для проявления активности. Действие на сердце. Систолическое действие инотропное Усиление и укорочение систолы.
32717. АНТИАРИТМИЧЕСКИЕ СРЕДСТВА 123 KB
  Антиаритмический эффект проявляют так же вещества действие которых направлено на эфферентную иннервацию сердца. Поэтому в механизме действия ААС ведущую роль играет их действие на клеточные мембраны транспорт ионов N K C и взаимосвязанные с этим изменения мембранного потенциала кардиомиоцитов. Препараты могут угнетать сократимость обладать умеренным Мхолинолитическим действием устранение влияния вагуса может способствовать распространению предсердной аритмии на желудочки. Влияет на все отделы проводящей системы сердца угнетает...
32718. АНТИАНГИНАЛЬНЫЕ СРЕДСТВА 118.5 KB
  ngin pectoris грудная жаба лекарственные средства применяемые для купирования и предупреждения приступов стенокардии и лечения других проявлений коронарной недостаточности при ишемической болезни сердца включая безболевую форму. При всех видах стенокардии возникает несоответствие между кровоснабжением миокарда и его потребностью в кислороде. Средства понижающие потребность миокарда в кислороде и повышающие доставку кислорода а нитраты Препараты нитроглицерина Для применения в медицинской практике нитроглицерин выпускают в виде готовых...
32719. ЛЕКАРСТВЕННЫЕ СРЕДСТВА ДЛЯ ЛЕЧЕНИЯ АТЕРОСКЛЕРОЗА (ГИПОЛИПИДЕМИЧЕСКИЕ СРЕДСТВА) 105.5 KB
  Ведущая роль отводится высокому содержанию холестерина в липопротеинах низкой плотности участвующих в образовании дестабилизации атеросклеротических бляшек и тромбогенезе. Цель их использования заключается в понижении концентрации в крови атерогенных липопротеидов липопротеидов низкой плотности ЛПНП липопротеидов очень низкой плотности ЛПОНП и холестерина ХС а также повышении концентрации антиатерогенных липопротеидов высокой плотности ЛПВП. Лекарственные средства как правило имеют несколько механизмов действия один из которых...
32720. АНТИГИПЕРТЕНЗИВНЫЕ СРЕДСТВА 130.5 KB
  Их антигипертензивное действие связано со стимуляцией центральных α2адренорецепторов расположенных в нейронах продолговатого мозга и вазомоторных центрах ствола мозга. Оказывает быстрое и выраженное гипотензивное действие. Кроме влияния на ССС клофелин оказывает значительное седативное действие обладает анальгезирующим действием может уменьшать выраженность абстинентного синдрома. Побочное действие: сонливость вялость усталость диспепсия запоры сухость во рту головные боли брадикардия нарушение сна тремор кожные реакции.
32721. Вивчення універсального вимірювача Е7-11 при вимірюваннях індуктивності, ємності, опору, тангенса кута втрат й добротності елементів 404.5 KB
  Вивчення універсального вимірювача Е7-11 при вимірюваннях індуктивності, ємності, опору, тангенса кута втрат й добротності елементів.