15252

ПРИМЕНЕНИЕ ГЕНЕТИЧЕСКОГО АЛГОРИТМА К РЕШЕНИЮ ЗАДАЧИ КОММИВОЯЖЁРА

Научная статья

Информатика, кибернетика и программирование

ПРИМЕНЕНИЕ ГЕНЕТИЧЕСКОГО АЛГОРИТМА К РЕШЕНИЮ ЗАДАЧИ КОММИВОЯЖЁРА Студент гр. В наши дни всё чаще даёт о себе знать проблема низкой производительности каких-либо расчётов. Вот и транспортная задача не стала ис...

Русский

2013-06-11

96.5 KB

55 чел.

ПРИМЕНЕНИЕ ГЕНЕТИЧЕСКОГО АЛГОРИТМА К РЕШЕНИЮ ЗАДАЧИ КОММИВОЯЖЁРА

Студент гр. 07-ИУ-1 Степанов М.М.

Руководитель: д.т.н., доц. Новицкий В.О.

В наши дни всё чаще даёт о себе знать проблема низкой производительности каких-либо расчётов. Вот и транспортная задача не стала исключением. С возрастанием количества точек для развоза грузов переборные алгоритмы хотя и продолжают выдавать оптимальные результаты расчёта, но делают это слишком медленно.

Поэтому, перед нами встаёт задача убыстрить, насколько это возможно, расчёты маршрутов автотранспорта.

В рамках этой задачи (оптимизации транспортной логистики) предполагается применение как переборных алгоритмов, таких как метод ветвей и границ, метод ближайшего соседа, так и введение эвристических алгоритмов(генетического алгоритма, алгоритма муравья, отжига), а также их комбинаций.

Генетические алгоритмы применяются для решения следующих задач:

  1.  Оптимизация функций
  2.  Оптимизация запросов в базах данных
  3.  Разнообразные задачи на графах (задача коммивояжера, раскраска, нахождение паросочетаний)
  4.  Настройка и обучение искусственной нейронной сети
  5.  Задачи компоновки
  6.  Составление расписаний
  7.  Игровые стратегии 
  8.  Искусственная жизнь

Генетический алгоритм - один из эвристических алгоритмов, которые в последнее время всё более востребованы. В частности, его можно применить к задаче коммивояжёра( транспортной задаче). Предлагаемый алгоритм может стать развитием задачи управления маршрутами на хлебокомбинате.

Общая схема алгоритма(рис. 1):

  •  Производится инициализация начального поколения.
  •  Затем производится оценка особей в поколении по определённым критериям.
  •  Затем из оцененных особей отбираются лучшие и скрещиваются, таким образом формируя новое поколение.
  •  На следующем этапе особи в созданном поколении могут мутировать, то есть с ними могут произойти чаще всего небольшие изменения, но возможна и такая мутация, как создание совершенно новой особи.

Рис.1 Схема работы генетического алгоритма

Этот набор действий повторяется итеративно, так моделируется «эволюционный процесс», продолжающийся несколько жизненных циклов (поколений), пока не будет выполнен критерий остановки алгоритма. Таким критерием может быть:

  •  нахождение глобального, либо субоптимального решения;
  •  исчерпание числа поколений, отпущенных на эволюцию;
  •  исчерпание времени, отпущенного на эволюцию.[2]

Генетические операторы:

  1.  Инициализация.

Задача для генетического алгоритма формализуется таким образом, чтобы её решение могло быть закодировано в виде вектора("генотипа") генов, где каждый ген может быть битом, числом или неким другим объектом[3]. Затем гены заполняются случайным образом в соответствии с выбранным представлением.

Мы предполагаем сделать этап инициализации более осмысленным – генотип будет определяться не случайным образом, а будет предоставляться одним из быстрых эвристических алгоритмов(например, алгоритм муравья), и затем усовершенствоваться с помощью генетического алгоритма.

  1.  Оценка.

Особи в поколении оцениваются с учётом их приспособленности(английский термин – fitness[1]). Оценка происходит по заранее заданным критериям.

  1.  Отбор.

Из полученного множества решений («поколения») с учётом значения «приспособленности» выбираются решения (обычно лучшие особи имеют большую вероятность быть выбранными) для последующего скрещивания.

  1.  Скрещивание.

Размножение в разных алгоритмах определяется по-разному — оно, конечно, зависит от представления данных. Главное требование к размножению — чтобы потомок или потомки имели возможность унаследовать черты обоих родителей, «смешав» их каким-либо способом.

  1.   Мутация.

Мутация проходит так: есть некоторая доля мутантов(процент мутации), являющаяся параметром генетического алгоритма, и на шаге мутаций нужно выбрать этот процент особей, а затем изменить их в соответствии с заранее определенными операциями мутации.

Работа операторов скрещивания:

Одноточечное скрещивание: случайным образом выбираются точки разрыва родительских хромосом, которые потом «склеиваются» для получения потомства.

Многоточечное скрещивание: случайным образом выбираются две точки разрыва, в которых «разрываются» родительские хромосомы, и из которых образуются дочерние.

Мутация выполняется в соответствии с определёнными операциями, которые задаются в зависимости от конкретной задачи.

Задача коммивояжёра.

Наша задача - это геометрическая задача коммивояжёра (также называемая планарной или евклидовой, когда матрица расстояний отражает только расстояния между точками на плоскости, без учёта стоимости, времени маршрута и т.д.). Наш критерий отбора очень прост - получить кратчайший маршрут. 

Скрещивание в задаче коммивояжёра:

Прежде всего, нужно сказать, что в генетическом алгоритме всё основано на случайных событиях. Мы случайно генерируем наш маршрут, с тем только условием, что мершрут проходит через все города, причём только один раз. Далее, после генерации маршрута, мы случайно выбираем точку скрещивания. После этого мы можем произвести скрещивание, но тут и возникают проблемы.

Если в одной части маршрута окажутся города, которые уже есть во второй части скрещиваемого маршрута, то нарушается условие задачи(каждый город обходится только один раз).

Как поступить в этой ситуации?

А поступаем мы очень просто. Не добавляем те точки из родительского гена, которые уже есть в гене ребёнка.

Таким образом, соблюдается условие нашей задачи.

Та же самая проблема возникает при проведении скрещивания в нескольких местах. Нарушается условие задачи.

Существует несколько способов решения проблемы перекрёстного скрещивания.

Первое решение - частично отображаемое скрещивание.

Случайным образом находим две точки разрыва. При формировании потомков вначале производим обмен частей находящихся между точками разрыва. Затем расставляем оставшиеся позиции от соответствующих хромосом по порядку (в данном случае сверху вниз) до возникновения конфликта (номер вершины повторяются в уже сформированной части хромосомы). Если произошел конфликт, то записываем не конфликтующий номер, а номер из соседней хромосомы. Так продолжается до полного разрешения конфликтов.

Второе решение - это упорядоченное скрещивание. Очень похоже на частично отображаемое, за тем исключением, что после обмена частями, находящимися между точками разрыва, мы копируем оставшиеся хромосомы не по порядку, а сначала в позицию после второй точки разрыва, а потом уже в начало, до первой точки разрыва.

Третий вариант - это скрещивание циклическое.

Формирование потомка идет по шагам. Сначала в самую верхнюю незанятую позицию ставится элемент из самой верхней позиции родителя, который не вызывал бы конфликт с уже проставленными элементами. Затем в самую нижнюю незанятую позицию ставится элемент из самой нижней позиции другого родителя, который, в свою очередь, не вызывал бы конфликт с уже проставленными в ребёнке элементами. Так продолжается до тех пор, пока не будут заняты все позиции(оба цикла встретятся посередине).

Для чего же нужно столько различных способов мутации?

Дело в том, что главный бич многих генетических алгоритмов — недостаток разнообразия в особях. Достаточно быстро выделяется один-единственный генотип, который представляет собой локальный максимум, а затем все элементы популяции проигрывают ему отбор, и вся популяция «забивается» копиями этой особи. Это — один из способов борьбы с таким нежелательным эффектом.

Мутации в задаче коммивояжёра.

Так же, как и в случае со скрещиванием, мы не можем просто изменить одну "хромосому" и ожидать от этого адекватного результата.

Что делать в этой ситуации?

Так как нельзя просто изменить одну хромосому в условиях нашей задачи, то можно просто поменять их местами(рис. 8.2). Таким образом, минимальное число хромосом, участвующих в мутации, будет равняться двум.

Мутация множества городов. Заключается в следующем: Случайным образом выбираем две точки разрыва, а затем меняем местами  "хромосомы" между этими двумя точками, конечно, тоже случайным образом.

Надо отметить, что минимальное число "хромосом", участвующих в данной мутации - четыре, так как при меньшем количестве нам просто нечего будет менять.

Использование генетического алгоритма для решения задачи коммивояжёра позволяет снизить скорость поиска области наилучших решений за счёт того, что этот алгоритм не перебирает все возможные значения, а, подражая биологической эволюции, отбирает на каждом шаге всё лучшие решения.

Совместное же его использование с другими эвристическими алгоритмами, которые будут предоставлять начальные значения, а также использование переборных методов для локальной оптимизации в операторах мутации могут дать дополнительный прирост в скорости.

Литература:

[1] Емельянов В. В., Курейчик В. В., Курейчик В. М. Теория и практика эволюционного моделирования. — М: Физматлит, 2003. — С. 432. — ISBN 5-9221-0337-7

[2] Курейчик В. М., Лебедев Б. К., Лебедев О. К. Поисковая адаптация: теория и практика. — М: Физматлит, 2006. — С. 272. — ISBN 5-9221-0749-6

[3] Гладков Л. А., Курейчик В. В., Курейчик В. М. Генетические алгоритмы: Учебное пособие. — 2-е изд.. — М: Физматлит, 2006. — С. 320. — ISBN 5-9221-0510-8

[4] Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы = Sieci neuronowe, algorytmy genetyczne i systemy rozmyte. — 2-е изд.. — М: Горячая линия-Телеком, 2008. — С. 452. — ISBN 5-93517-103-1

 


 

А также другие работы, которые могут Вас заинтересовать

18566. ОБЩИЕ СВЕДЕНИЯ О ПРОЕКТИРОВАНИИ ТЕХНИЧЕСКИХ ОБЪЕКТОВ 221 KB
  ОБЩИЕ СВЕДЕНИЯ О ПРОЕКТИРОВАНИИ ТЕХНИЧЕСКИХ ОБЪЕКТОВ Инженерная деятельность человека связанна прежде всего с разработкой технических объектов с их проектированием. Проектирование это комплекс работ по изысканиям исследованиям расчетам и конструированию и
18567. Системы автоматизированного проектирования и их место среди других автоматизированных систем 99 KB
  Системы автоматизированного проектирования и их место среди других автоматизированных систем Структура САПР Как и любая сложная система САПР состоит из подсистем рис. 1.1. Различают подсистемы проектирующие и обслуживающие. Проектирующие подсистемы непосредствен...
18568. МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ СИНТЕЗА ПРОЕКТНЫХ РЕШЕНИЙ 69 KB
  МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ СИНТЕЗА ПРОЕКТНЫХ РЕШЕНИЙ Постановка задач параметрического синтеза Место процедур синтеза в проектировании Сущность проектирования заключается в принятии проектных решений обеспечивающих выполнение будущим объектом предъявляемых к
18569. Оптимизация технических объектов в системах автоматизированного проектирования 272.5 KB
  Оптимизация технических объектов в системах автоматизированного проектирования. Данная глава посвящена вопросам постановки и решения задач оптимизации при техническом проектировании. Главное внимание уделяется параметрической оптимизации непрерывных объектов.
18570. Общие сведения об ОС 124.5 KB
  Общие сведения об ОС. Операционная система комплекс системных управляющих и обрабатывающих программ предназначенных для наиболее эффективного использования всех ресурсов ВС и удобства работы с ней. В настоящее время только с помощью ОС можно полностью загружат
18571. ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САПР 109 KB
  ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САПР Структура и требования к ТО САПР Техническое обеспечение САПР включает в себя различные технические средства hardware используемые для выполнения автоматизированного проектирования а именно: ЭВМ периферийные устройства сетевое оборуд
18572. Сети ЭВМ и средства телекоммуникационного метода доступа 63 KB
  Сети ЭВМ и средства телекоммуникационного метода доступа Для современного этапа развития средств вычислительной техники характерно использование сравнительно дешевых мини микро и персональных ЭВМ обладающих достаточно большими вычислительными возможностями. По...
18573. Базы данных. Логическая область базы данных 145.5 KB
  Базы данных. Лекция № 1. 1. Предметная область базы: данных сварное соединение стыковое нахлесточное и т.п. Объекты предметной области. Логическая область базы данных цифры записи и т.п.. 2.Характеристика объекта предметной области называется атрибуткоторый прин
18574. НАЗНАЧЕНИЕ, СУЩНОСТЬ И СОСТАВНЫЕ ЧАСТИ ИНФОРМАЦИОННОГО ОБЕСПЕЧЕНИЯ САПР 93.5 KB
  НАЗНАЧЕНИЕ СУЩНОСТЬ И СОСТАВНЫЕ ЧАСТИ ИНФОРМАЦИОННОГО ОБЕСПЕЧЕНИЯ САПР Основное назначение ИО САПР уменьшение объемов информации требуемой в процессе проектирования от разработчика РЭС и исключение дублирования данных в прикладном программном и техническом обе...