15269

ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБЪЕКТА УПРАВЛЕНИЯ

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

ЛАБОРАТОРНАЯ РАБОТА № 10 ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБЪЕКТА УПРАВЛЕНИЯ Цель работы. Изучение математических моделей и исследование характеристик электромеханического объекта управления построенного на основе электродвигателя пос...

Русский

2013-06-11

2.5 MB

42 чел.

ЛАБОРАТОРНАЯ РАБОТА № 10

ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ

ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБЪЕКТА УПРАВЛЕНИЯ

Цель работы. Изучение математических моделей и исследование характеристик электромеханического объекта управления, построенного на основе электродвигателя постоянного тока независимого возбуждения.

Методические рекомендации. До начала работы студенты должны получить от преподавателя вариант задания. К выполнению работы допускаются студенты, рассчитавшие параметры математических моделей ЭМО (см. п.1 порядка выполнения работы). Лабораторная работа рассчитана на 2 часа.

Теоретические сведения. Функциональная схема типичного электромеханического объекта (ЭМО) представлена на рис.10.1. Она включает усилительно-преобразовательное устройство (УПУ), электродвигатель (ЭД), редуктор (Р) и исполнительный механизм (ИМ). Усилительно-преобразовательное устройство служит для формирования напряжения, подаваемого на двигатель в соответствии с управляющим сигналом. Электродвигатель осуществляет преобразование электрической энергии в механическую. Редуктор снижает скорость вращения и повышает момент двигателя на валу ИМ. В качестве исполнительного механизма могут выступать механизмы станков, роботов, поточных линий, рулевые устройства летательных аппаратов, подвижные элементы автоматического оборудования и приборов. Для получения информации о состоянии объекта, используемой в устройстве управления, ЭМО может снабжаться различными измерительными устройствами: углового или линейного перемещения (измерители перемещения — ИП), угловой или линейной скорости (измерители скорости — ИС), измерителями тока якоря и напряжения усилителя мощности.

В работе рассматривается электромеханический объект управления, выходным сигналом которого является угловое перемещение ИМ, а управляющим сигналом — входное напряжение УПУ. Измерение угловой скорости осуществляется на валу двигателя. Момент сопротивления , приложенный к валу ИМ, выступает в качестве возмущающего воздействия.

Модель ЭМО. В соответствии с законом Ома, для электрической цепи двигателя получаем следующее уравнение

, (10.1)

где напряжение, подаваемое на двигатель,  — противо-ЭДС, ток, якоря,  и сопротивление и индуктивность цепи якоря, коэффициент ЭДС

(первая конструктивная постоянная), — угловая скорость ротора. Обозначив , , уравнение (10.1) можно записать в виде

. (10.2)

Уравнение вращения якоря электродвигателя имеет вид

 , (10.3)

где — вращающий момент двигателя, — коэффициент момента (вторая конструктивная постоянная),момент инерции, приведенный к валу двигателя,  — момент сопротивления, приведенный к валу двигателя. Скорость вращения  и угол поворота ротора  связаны соотношением

.         (10.4)

Редуктор обеспечивает усиление момента двигателя и соответствующее снижение скорости вращения нагрузки

,      ,    , (10.5)

где — передаточное отношение редуктора, — вращающий момент на выходном валу редуктора (т.е. момент, приложенный к исполнительному механизму), — угловая скорость вращения выходного вала редуктора,  — угол поворота исполнительного механизма (нагрузки) При этом справедливо и обратное преобразование от выходного вала к входному  . При наличии редуктора момент инерции, приведенный к валу двигателя, определяется по формуле

 ,  (10.6)

где момент инерции двигателя, — приведенный момент инерции редуктора, — момент инерции исполнительного механизма (нагрузки).

Усилительно-преобразовательное устройство с высокой степенью точности может быть представлено апериодическим звеном

, (10.7)

где входное напряжение УПУ,  и — постоянная времени и коэффициент усиления УПУ, соответственно. Требуемый коэффициент усиления  определяется как отношение номинального напряжения двигателя  к максимальному напряжению  на входе усилительно-преобразовательного устройства , (обычно ).

Измерительные устройства будем считать безынерционными. На выходе измерительных устройств формируются измеренные значения  напряжения , тока , скорости и угла поворота

,     ,     ,     .   (10.8)

Коэффициенты передачи измерительных устройств ,  ,   и  должны обеспечить соответствие максимального значения измеряемого сигнала уровню 10 В на выходе измерительного устройства.

Таким образом, математическая модель ЭМО полностью описывается уравнениями (10.1)-(10.8). Структурная схема ЭМО приведена на рис.10.2.

Упрощенная модель ЭМО. Часто электрические постоянные времени усилителя  и ЭД  значительно меньше, чем механическая постоянная времени . В этом случае для упрощения математической модели пренебрегают малыми постоянными времени, заменяя апериодические звенья первого порядка с передаточными функциями  и   пропорциональными звеньями с коэффициентами передачи  и , соответственно. Таким образом, упрощенная модель ЭМО имеет вид, приведенный на рис.5.3, где , , .

Порядок выполнения работы.

Изучить математические модели ЭМО (полную и упрощенную) и для заданного варианта (см. табл.10.1) рассчитать их параметры. При расчете параметров приведенный момент инерции редуктора считать . Коэффициент  рассчитывается исходя из формулы скорости вращения холостого хода (обратите внимание, что в табл.10.1 частота вращения холостого хода  измеряется в "оборотах в минуту").

Составить схему моделирования полной модели ЭМО и получить графики переходных процессов для , ,  , при  Нм и . Время моделирования должно быть выбрано таким, чтобы обеспечить наилучшее представление переходного процесса.

Исследовать влияние момента сопротивления  на вид переходных процессов. Для этого получить графики переходных процессов по , ,  и  при различных значениях момента сопротивления . Диапазон изменения : от 0 Нм до величины, равной . По временным диаграммам определить время переходного процесса  и установившиеся значения скорости  и тока .

Исследовать влияние момента инерции нагрузки  на вид переходных процессов. Определить время переходного процесса  и установившиеся значения  и . Диапазон изменения момента инерции:  от заданного значения.

Исследовать влияние передаточного отношения редуктора  на вид переходных процессов (при изменении  учесть, что будет меняться и приведенный момент инерции, см. формулу (10.6)). Исследования проводить при величине момента сопротивления , равного половине максимального значения (см. п.3), рассчитанного для заданного значения , и при . Диапазон изменения передаточного отношения:  от заданного значения.

Получить графики переходных процессов при меньших значениях постоянных времени: ,—уменьшить на порядок.

Собрать схему моделирования приближенной модели ЭМО и получить графики переходных процессов для измеренных значений , при . Проанализировать погрешности, вызванные упрощением модели, для чего результаты исследования сопоставить с данными, полученными в п.2. и в п.6.

Содержание отчета

Расчет параметров математической модели двигателя.

Схемы моделирования.

Графики переходных процессов по , ,  , и данные, полученные по этим графикам.

Вывод математических моделей вход-состояние-выход для полной и упрощенной схем моделирования ЭМО.

Выводы.

Вопросы к защите лабораторной работы

Какое назначение имеет усилительно-преобразовательное устройство?

Какой передаточной функцией описывается редуктор?

Рассчитать момент сопротивления на валу двигателя (см. рис.10.1), если известны масса подвешенного груза и диаметр барабана ИМ.

Какая размерность коэффициентов передачи  и  упрощенной модели двигателя?

Какие параметры математической модели ЭМО влияют на время переходного процесса?

На основе структурной схемы (рис.10.2) получите методом структурных преобразований передаточную функцию ЭМО от к (от  к ).

В каком случае возможно использование упрощенной математической модели ЭМО?

Таблица 10.1

Варианты задания.

вар.

В

об/мин

A

Нм

Ом

мс

кг м2

мс

кг м2

1

27

600

1,4

0,6

6,6

6

1,5.10-3

4

15

0,05

2

48

1000

12

5,5

0,75

5

1,6.10-3

6

16

2,75

3

36

4000

6,5

0,57

0,85

3

2,2.10-4

6

40

0,15

4

27

970

3,76

1

1,5

6

0,001

8

16

0,84

5

120

6000

21

4

0,53

8

1,9.10-3

8

40

5,75

6

27

2500

0,92

0,12

16,6

7

7.10-5

4

50

0,01

7

52

1240

18

7,21

0,3

10

0,004

10

20

2,48

8

110

2400

11,5

5

0,95

7

2.10-3

8

20

3,7

9

27

2440

0,38

0,04

32

6

5,5.10-6

3

40

0,03

10

65

2000

14,7

4,6

0,65

10

3,4.10-3

8

20

2,25

11

27

1975

1,23

0,16

4,2

5

7.10-5

8

25

0,15

12

27

646

10

4

0,72

2

0,003

10

10

1,6


 

А также другие работы, которые могут Вас заинтересовать

30182. Установление специфики юридической ответственности органов местного самоуправления 428.5 KB
  Ответственность органов местного самоуправления выступает важным элементом их правового статуса гарантией качественной работы и добросовестного осуществления своих полномочий. Предназначение конституционноправовой ответственности заключается в охране конституционного строя основных прав и свобод граждан в обеспечении нормального порядка осуществления публичной власти в следовании органов местного самоуправления предписаниям действующего законодательства в предупреждении превенции посягательств на порядок осуществления...
30183. Повышения эффективности использования строительных машин, увеличение срока их службы и надежности в работе 897.6 KB
  Рост парка машин позволил в значительной степени механизировать труд работников в строительстве. Уровень его механизации достиг 80%. Машинами выполняются почти все основные виды строительно-монтажных работ. В этих условиях своевременность и высокое качество сооружения строительных объектов в большой степени зависят от уровня работоспособности машин. Чем он выше, тем больше гарантий в том, что объекты будут построены в установленные сроки и качественно.
30184. Пропозиції щодо поліпшення співробітництва між Україною та ЄС у виробничому секторі 114.5 KB
  Економічне становище регіону, створення належних умов для життя і праці його населення залежить від розвитку виробничої сфери. Виробнича сфера виступає основою для задоволення людських потреб. Потреби, в свою чергу, відіграють роль стимуляторів діяльності людей.
30185. Разработка системы управления электроприводом листоправильной машины, учитывающий переменность статического момента нагрузки и момента инерции, с целью повышения энергетической эффективности стана11×280×2300 3.84 MB
  передачи от двигателя к валку отн. От первого двигателя 24–M1 по ходу металла приводится пять правильных валков три верхних и два нижних находящихся ближе к входу листоправильной машины; от второго двигателя 24–M2 – остальные шесть валков №6–№11. Двигатели предназначены для работы от преобразователей частоты и оснащены каждый датчиком импульсов 24–BN1 24BN2 – контроль скорости вентилятором обдува с электроприводом двигатели 24–M3 24–M4 а также датчиками контроля температуры в обмотках KTY 84–130 – 1 шт и подшипниках...
30186. Разработка проекта межевания земельных участков на землях бывшего колхоза “Россия” Каширского района Воронежской области 3.42 MB
  Земельный кодекс Российской Федерации от 25.10.2001 г. №136-ВЗ является головным отраслевым законом, обладающим приоритетом в регулировании земельных отношений. Кодекс создает правовые гарантии провозглашенных в Конституции РФ земельных прав граждан; устанавливает приоритет охраны земли перед использованием в качестве недвижимости; приоритет охраны жизни и здоровья человека при решении вопроса о затратах
30187. Динамика роста и накопление сухого вещества по фазам развития растений яровой пшеницы в зависимости от условий питания и применения удобрений 80.51 KB
  Народнохозяйственное значение яровой пшеницы. Морфологические и биологические особенности яровой пшеницы. Влияние удобрений на урожайность и качество зерна яровой пшеницы яровых зерновых культур. Динамика роста и накопление сухого вещества по фазам развития растений яровой пшеницы в зависимости от условий питания и применения удобрений.
30188. Развитие композиционных умений учащихся 6-х классов средствами декоративного натюрморта в технике гуашь 1.13 MB
  Одной из основных задач образования является всестороннее созревание личности ребенка, а так же эстетическое воспитание подрастающего поколения. Эстетическое воспитание - это сложный и продолжительный процесс, дети приобретают первые художественные впечатления, изучая различные виды художественной деятельности. Изобразительная деятельность - специфическое, образное постижение действительности, которое может идти всевозможными путями.
30189. ОСНОВНЫЕ ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К СТАНОЧНЫМ ЭЛЕКТРОПРИВОДАМ 113.5 KB
  Так при требуемой точности ПОЗИционирования шпинделя 01максимальной частоте вращения двигателя 30005000 об мин суммарный диапазон изменения частоты вращения должен быть не менее 10000 Электромеханический способ регулирование скорости частоты вращения для приводов главного движения является наиболее перспективным. Требуемый технологический диапазон регулирования скорости шпинделя с постоянной мощностью равный 20 50 при двухступенчатой коробке скоростей можно обеспечить при электрическом регулированни скорости двигателя с постоянной...