15309

Футбольный мяч. Растровый редактор Gimp

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа № 5. Растровый редактор Gimp Вариант 7 Задание к лабораторной роботе: Выполнить задание по инструкции Творчески доработать картинку добавить чтото свое В отчет: Текстовый фал тема название задания скриншот картинки Файл рисун...

Русский

2013-06-11

440.5 KB

27 чел.

Лабораторная работа № 5. Растровый редактор Gimp

Вариант 7

Задание к лабораторной роботе:

  1.  Выполнить задание по инструкции
  2.  Творчески доработать картинку (добавить что-то свое)
  3.  В отчет:
  4.  Текстовый фал (тема, название задания, скриншот картинки)
  5.  Файл рисунка (расширение .xcf)

Футбольный мяч

Создайте новое изображение большого размера (приблизительно 800х800) с белым фоном.

Создайте новый слой.

Нарисуйте шестиугольник.

Я использовала инструмент Карандаш. Поставьте точку, удерживая клавишу Shift, ведите мышкой вниз примерно на 100 пикселей. Скопируйте слой трижды. 1-й слой поверните на 120o, 2-й на −120o, 3-й слой оставьте, как есть. Скопируйте 1-й и 2-й слои. Получилось 6 слоев + фон. Совместите края прямых, получите шестиугольник и склейте слои (без фона). Теперь у вас 2 слоя (слой с белым фоном и слой с шестиугольником).

Копируем слой с шестиугольником столько, сколько необходимо, чтобы получилось, как на картинке.

Инструментом Волшебная палочка выделяем центры шестиугольников, которые надо закрасить черным. Выделили, затем заливаем черным цветом. Остальные заливаем белым цветом.

Выделяем окружность.

Переводим выделение в контур.

Инвертируем выделение.

Delete.

Инвертируем выделение.

Назовите слой Мяч.

Создаем новый слой над Мячом, заливаем его градиентной заливкой от черного к прозрачному и устанавливаем прозрачность слоя на 50%.

Создаем новый слой под Мячом, заливаем его черным цветом. Применяем к нему фильтр Гауссово размывание, устанавливаем прозрачность слоя на 70%. Инструментом Изменение перспективы слоя кладем тень Мяча на пол.

Заливаем фон градиентной заливкой от черного к белому цвету. Склеиваем слои относящиеся к мячу. Теперь у нас 3 слоя (с мячом, тенью и фоном).

Как видите, мяч получился не совсем реалистичным.

По слою Мяч щелните правой клавишей мыши и выберите из списка Альфа-канал −> Выделение. В итоге выделится наш мяч. Примените к слою Мяч фильтр Свет и тень−>Линза, нажмите OK.

Вот теперь мяч готов!


 

А также другие работы, которые могут Вас заинтересовать

26040. Общая структура триггеров 13.24 KB
  Информационные сигналы поступают на входы A и В ЛУ и преобразуются в сигналы поступающие на внутренние входы S и R ЯП. Управляющие сигналы на асинхронный триггер воздействуют непосредственно с началом своего появления на их входах а в синхронных только с приходом сигнала на входе C.
26041. Простые триггеры 20.11 KB
  Схема простейшего триггера построенного на инверторах В этой схеме может быть только два состояния на выходе Q присутствует логическая единица и на выходе Q присутствует логический ноль. Если логическая единица присутствует на выходе Q то на инверсном выходе будет присутствовать логический ноль который после очередного инвертирования подтверждает уровень логической единицы на выходе Q. И наоборот если на выходе Q присутствует логический ноль то на инверсном выходе будет присутствовать логическая единица.
26042. JK-триггеры 14.14 KB
  Подобно RSтриггеру в JKтриггере входы J и K это входы установки выхода Q триггера в состояние 1 или 0. Однако в отличие от RSтриггера в JKтриггере наличие J=K=1 приводит к переходу выхода Q триггера в противоположное состояние. Условие функционирования JKтриггера описывается функцией: Рисунок 51 JKтриггеры: а асинхронные; б тактируемые фронтом. Триггер JKтипа называют универсальным потому что на его основе с помощью несложных коммутационных преобразований можно получить RS и Ттриггеры а если между входами J и K включить...
26043. D-триггеры 13.79 KB
  Характеристическое уравнение триггера: Qn1=Dn. Оно означает что логический сигнал Qn1 повторяет значение сигнала установленное на входе триггера в предшествующий момент времени. Благодаря включению элемента D1 на входы RSтриггера поступают разнополярные сигналы Рисунок 47а поэтому запрещённое состояние входных сигналов исключено но время задержки распространения сигнала элемента D1 должно быть меньше чем у элементов D2 и D3 tзд. В приведённой выше схеме Dтриггера вследствие задержки распространения сигналов сигнал на выходе Q...
26044. Счётные триггеры 18.55 KB
  Функционирование триггера определяется уравнением: Из уравнения следует что Ттриггер каждый раз изменяет своё состояние на противоположное с приходом на счётный вход Т очередного тактирующего импульса длительностью tи. Этому способствует наличие перекрёстных обратных связей с выходов триггера на входы элементов D1 и D2. Для надёжной работы триггера с целью сохранения информации о предыдущем состоянии триггера в момент его переключения в схему вводят элементы задержки имеющие время задержки tз tи. Сигнал на этом входе разрешает при V=1...
26045. Сумматоры, их схемы 98.69 KB
  Сумматоры их схемы В цифровой вычислительной технике используются одноразрядные суммирующие схемы с двумя и тремя входами причём первые называются полусумматорами а вторые полными одноразрядными сумматорами. приведена таблица истинности полусумматора на основании которой составлена его структурная формула в виде СДНФ Основными параметрами характеризующими качественные показатели логических схем являются быстродействие и количество элементов определяющее сложность схемы. Быстродействие определяется суммарным временем задержки сигнала...
26046. Программированные логические матрицы(ПЛЦ) 14.64 KB
  Программированные логические матрицыПЛЦ Основная идея работы ПЛМ заключается в реализации логической функции представленной в СДНФ дизъюнктивной нормальной форме. В схеме ПЛМ приведенной на рисунке 1 ранг терма ограничен количеством входов и равен четырем количество термов тоже равно четырем. В реально выпускавшихся микросхемах программируемых логических матриц ПЛМ количество входов было равно шестнадцати максимальный ранг минтерма 16 количество термов равно 32 и количество выходов микросхемы 8. Следует отметить что полная...
26047. Большие интегральные схемы(БИС) запоминающихся устройств(ЗУ). Организация БИС ЗУ 15.67 KB
  Большие интегральные схемы БИС запоминающихся устройств ЗУ. Организация БИС ЗУ Большая интегральная схема БИС интегральная схема ИС с высокой степенью интеграции число элементов в ней достигает 10000 используется в электронной аппаратуре как функционально законченный узел устройств вычислительной техники автоматики измерительной техники и др. По количеству элементов все интегральные схемы условно делят на следующие категории...
26048. Двоичные счётчики 15.41 KB
  Двоичные счётчики Счетчик представляет собой устройство состояние которого определяется числом поступивших на его вход импульсов. Счетчики используют для подсчета числа импульсов и фиксации этого числа в заданном коде деления частоты следования импульсов формирования последовательностей импульсов и кодов управления цифровыми блоками. Двоичный n разрядный счетчик содержит n каскадносоединенных ячеек в качестве которых используют счетные Ттриггеры При поступлении входных импульсов по их спаду происходит последовательное изменение...