15336

Изучение алгоритма Дейкстры и реализация его для заданного графа на языке программирования С++

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа №1 по дисциплине Структуры и алгоритмы обработки данных Цель работы: Изучение алгоритма Дейкстры и реализация его для заданного графа на языке программирования С. Алгоритм Дейкстры англ. Dijkstras algorithm алгоритм на графах изобретённый н

Русский

2013-06-13

344.5 KB

40 чел.

Лабораторная работа №1

по дисциплине

«Структуры и алгоритмы обработки данных»

Цель работы:

Изучение алгоритма Дейкстры и реализация его для заданного графа на языке программирования С++.

Алгоритм Дейкстры (англ. Dijkstra’s algorithm) — алгоритм на графах, изобретённый нидерландским ученым Э. Дейкстрой в 1959 году. Находит кратчайшее расстояние от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса.

Задание на работу

  1.  Написать программу, генерирующую граф согласно варианта.
    1.  Реализовать функцию поиска кратчайшего пути к вершине по алгоритму Дейкстры.
      1.  Искомая вершина должна задаваться через пользовательский интерфейс.
      2.  Оценить сложность алгоритма программы.
      3.  Представить граф как в графическом виде, так и в виде матриц.

Количество вершин: 12

Количество рёбер: 12

Вес рёбер:

  •  1, 4, 6, 8, 10, 12 = от 3 до 7
    •  2 = от 10 до 12
    •  3, 11 = от 6 до 8
    •  5 = от 5 до 9
    •  7 = от 1 до 2
    •  9 = от 1 до 3

Граф в графическом виде

Граф в матричном виде

Реализация программы на C++

// graph.cpp: определяет точку входа для консольного приложения.

//

#include "stdafx.h"

#include <iostream>

#include <stdlib.h>

#include <time.h>

using namespace std;

const int tops = 12;

const int edges = 12;

const int infinity = 999;

void output_graph(int g[tops][edges]);

void generate_graph(int g[tops][edges]);

int weight(int n);

void dijkstra(int g[tops][edges], int start, int end);

void bestWay(int start, int current, int marks[tops], int g[tops][edges]);

void listOfedges(int g[tops][edges]);

int _tmain(int argc, _TCHAR* argv[])

{

srand(time(NULL));

int graph [tops][edges];

for(int i=0; i<tops; i++)//инициализация матрицы

 for(int j=0; j<edges; j++)

 {

  graph[i][j] = 0;

 }

generate_graph(graph);

output_graph(graph);

listOfedges(graph);

 

int a, b;

cout << "Enter first top (from 1 to 12): ";

cin >> a;

cout << "Enter last top (from 1 to 12): ";

cin >> b;

if (a == b)

 cout << "First top and the last top does not have to be equal." << endl;

else if (a < 1 || b < 1 || a > tops || b > tops)

 cout << "Invalid value entered" << endl;

else

 dijkstra(graph,a-1, b-1);

system("PAUSE");

return 0;

}

void dijkstra(int g[tops][edges], int start, int end)

{

bool visited[tops];

int marks[tops];

int current = start;

for (int i=0; i < tops; i++)//инициализция массивов

{

 visited[i] = false;

 marks[i] = infinity;

 }

marks[current] = 0;//метка первой вершины = 0

for (int x = 0; x < tops; x++)//цикл по количеству вершин

{

 visited[current] = true;//теперь текущая вершина посещена

 //*****************************

 //исследуем текущую вершину

 //*****************************

 //ищем непосещённые смежные вершины и изменяем метки в них

 for (int top = 0; top < tops; top++)

 {

  //если вершина не посещена и она смежная с текущей //и это не текущая вершина

  if(!visited[top] && g[current][top] /*&& current != top*/)

   //если метка найденной вершины больше чем путь до текущей + вес инцидентного ребра

   if(marks[top] > marks[current] + g[current][top])

    //то метка этой вершины равна пути до текущей + вес ребра

    marks[top] = marks[current] + g[current][top];

 }

 //*****************************

 //ищем новую текущую вершину

 //*****************************

 int min = infinity;

 current = -1;

 for (int top = 0; top < tops; top++)

  //если вершина не посещена и её метка меньше

  if(!visited[top] && marks[top] < min)

  {

   min = marks[top];

   current = top;

  }

}

//*****************************

//выводим лучший путь

//*****************************

cout << "One of the shortest paths is: ";

bestWay(start, end, marks, g);

 cout << endl << endl;

}

//рекурсивная функция для вывода лучшего пути

void bestWay(int start, int current, int marks[tops], int g[tops][edges])

{

if (current != start)

{

 int min = infinity;

 int next = -1;

 for (int top = 0; top < tops; top++)

  if(g[current][top] && marks[top] <= min)//если вершина смежная и её метка меньше минимальной

  {

   min = marks[top];

   next = top;

  }

  bestWay(start, next, marks, g);

  cout << " -> ";

}

cout << current+1;

}

void generate_graph(int g[tops][edges])//генерация графа

{

int edge = 0;//номер ребра

bool check_tops[tops];//метки несоединённых вершин

for (int i = 0; i < tops; i++)

 check_tops[i] = false;

bool f = true;//флаг факта соединения

int previousTop = 0 + rand() % 11;//первая вершина

int nextTop = -1;//следующая вершина

check_tops[previousTop] = true;//начальную пометим соединённой

 for(int i = 1; i < tops; i++)//соединяем все вершины графа (итераций на 1 меньше, чем вершин).

 {

 do

 {

  f = true;

  nextTop = rand() % 12;

  if(!check_tops[nextTop])//если вершина не соединена

  {

   check_tops[nextTop] = true;

   f = false;

  }

 } while (f);

 

 g[previousTop][nextTop] = g[nextTop][previousTop] = weight(edge);//соединяем  

 edge++;

 previousTop = nextTop;

}

 

//соединили все вершины, ставим оставшиеся рёбра

 int x = 0;

int y = 0;

for(; edge < edges; edge++)

 {

 do

 {

  x = rand() % 12;//1я вершина для соединения

  y = rand() % 12;//2я вершина для соединения

 } while (x==y && g[x][y]);//пока вершины не равны и уже не соединены

 g[x][y] = g[y][x] = weight(edge);//соединяем

}

}

int weight(int n)

{

if (n == 0 || n == 3 || n == 5 || n == 7 || n == 9 || n == 11)//3-7

{

 return 3 + rand() % 5;

}

else if (n == 1)//10-12

{

 return 10 + rand() % 3;

}

else if (n == 2 || n == 10 )//6-8

{

 return 6 + rand() % 3;

}

else if (n == 4)//5-9

{

 return 5 + rand() % 5;

}

else if (n == 6)//1-2

{

 return 1 + rand() % 2;

}

else if (n == 8)//1-3

{

 return 1 + rand() % 3;

}

else

{

  cout << "this value is incorrect" << endl;

  return -1;

}

}

void output_graph(int g[tops][edges])

{

cout << "  ";

for(int i=0; i<tops; i++)//верхняя строка значений

{

 if (i<9)

  cout << ' ';

 cout << i+1 << ' ';

}

cout << endl<< endl;

 

for(int i=0; i<tops; i++)//вывод матрицы

{

 if (i < 9)

  cout << ' ';

 cout << i+1 << ' ';

 for(int j=0; j<edges; j++)

 {

  

  cout << g[i][j];

  if(g[i][j] < 10)

   cout << ' ';

  cout << ' ';

 }

 cout << endl << endl;

}

cout << endl;

}

void listOfedges(int g[tops][edges])

{

cout << endl << "        List of edges" << endl << "top-----*edge weight*-----top"<< endl<< endl;

for (int x = 0; x<tops;x++)

 for (int y = 0; y<tops; y++)

  if (g[x][y] && x > y)

   cout

   << ((x+1 < 10) ? " " : "" )

   << x+1

   << "----------*"

   << ((g[x][y] < 10) ? " " : "" )

   << g[x][y]

   <<"*----------"

   << ((y+1 < 10) ? " " : "" )

   << y+1

   << endl;

cout << endl;

}

Скриншот с результатами выполнения программы

Оценка сложности алгоритма по наихудшему случаю

Наихудшим случаем будет, если на рассмотрение взять полный граф. Пусть n — это количество вершин. В полном графе количество рёбер будет ровно n(n-1)/2. Основной цикл алгоритма выполняется n раз. Так же в каждой итераци цикла тратится n операций на нахождение минимума и  n(n-1)/2 на подсчёт длины пути до вершины. Тогда сложность алгоритма можно записать как:

O((n^2)+n(n-1)/2 = O(3*(n^2)/2-1/2) = O(n^2)

Вывод

Был изучен алогритм Дейкстры и реализован на языке программирования С++. Была оценена сложность алгоритма.


10

6

2

9

7

5

4

8

12

3

11

6

1

4

8

5

2

5

7

4

8

7

12


 

А также другие работы, которые могут Вас заинтересовать

20816. Анализ маркетинговой деятельности в ООО «Техносила» 252.19 KB
  В результате исследований была разработана маркетинговая стратегия ООО «Техносила», которая позволит расширить рынок сбыта продукции, проведена социально-экономическая оценка ее реализации.
20817. Видатні живописці Іспанії 89 KB
  Ознайомити учнів із життям та творчістю видатних іспанських художників ХVI - XХ століть Ель Греко, Дієго Веласкесом, Франсіско Гойя; розвивати зацікавленість мистецтвом, спостережливість, інтерес до світової культурної спадщини, естетичні смаки, естетичні критерії суджень про твори мистецтва, вміння висловлювати власну думку; виховувати любов до художньої творчості, дбайливе ставлення до пам’яток мистецтва.
20818. ЕКСПЕРИМЕНТАЛЬНА ПЕРЕВІРКА ЕФЕКТИВНОСТІ ПЕДАГОГІЧНИХ УМОВ ОРГАНІЗАЦІЇ ЕСТЕТИЧНОГО ВИХОВАННЯ ПЕРШОКЛАСНИКІВ У ХОДІ УРОКІВ НАВЧАННЯ ГРАМОТИ 305 KB
  Розробити систему критеріїв та показників дослідження складових естетичної свідомості (мотивації щодо участі в естетичній діяльності та рівня знань щодо естетичної краси слова першокласників на уроках навчання грамоти). Отримати дані про наявний рівень мотивації першокласників щодо участі в естетичній діяльності, знань учнів про естетичну красу слова.
20819. Драматургічні особливості, сценічна історія, популярність в народі та значення п’єси І.Котляревського «Наталка Полтавка» 20.51 KB
  Народність твору полягає не тільки в тому, що він написаний живою народною мовою, а й у тому, який його зміст і чи поданий він з народних традицій, чи відображає погляди, настрої і прагнення народу.
20820. РОЛЬ МОРАЛЬНО-ЕСТЕТИЧНИХ ІДЕАЛІВ В ВИХОВАННІ НАЦІОНАЛЬНОЇ ЕЛІТИ 72 KB
  Василь Пачовський писав: “Всі великі державні нації мають ідеї свого національного посланництва, які виростають з почуття самоповаги провідної верстви. Суть цієї ідеї – як каже В.Липинський – лежить в тому
20821. Организация бухгалтерского и налогового учета основных средств на ООО «Агро-Сибирь» 113.32 KB
  Отличительной особенностью основных средств является их многократное использование в процессе производства, сохранение первоначального внешнего вида (формы) в течение длительного периода. Под воздействием производственного процесса и внешней среды они снашиваются постепенно и переносят свою первоначальную стоимость
20822. Відповідальність за розголошення лікарської таємниці 210.5 KB
  Проаналізувати лікарську таємницю як елемент системи професійної таємниці; здійснити загальну характеристику інституту лікарської таємниці як об’єкта правового регулювання; визначити суб’єктів збереження лікарської таємниці та здійснити їх класифікацію; визначити в яких випадках відповідно до законодавства України може бути розголошена лікарська таємниця...
20823. Процессуальное право 38.51 KB
  Административный процесс — это порядок осуществления государственно-управленческой деятельности по реализации норм административного права. В более узком, специальном смысле административный процесс — это деятельность государственных органов по рассмотрению дел об административных правонарушениях. В данной главе речь пойдет именно об этом аспекте административного процесса.