15428

Действие физических и химических факторов на микроорганизмы. Стерилизация. Методы стерилизации. Дезинфекция. Основные группы дезинфицирующих и антисептических веществ, механизм их антибактериального действия

Конспект урока

Медицина и ветеринария

ЗАНЯТИЕ 3 ТЕМА ЗАНЯТИЯ: Действие физических и химических факторов на микроорганизмы. Стерилизация. Методы стерилизации. Дезинфекция. Основные группы дезинфицирующих и антисептических веществ механизм их антибактериального действия. Физиология бактерий. Питание мик...

Русский

2013-06-13

67 KB

56 чел.

ЗАНЯТИЕ 3

ТЕМА ЗАНЯТИЯ: Действие физических и химических факторов на микроорганизмы. Стерилизация. Методы стерилизации. Дезинфекция. Основные группы дезинфицирующих и антисептических веществ, механизм их антибактериального действия. Физиология бактерий. Питание микроорганизмов. Питательные среды, их классификация. Техника посева в жидкие и на плотные питательные среды. Бактериологический метод (первый этап).  

УЧЕБНАЯ ЦЕЛЬ ЗАНЯТИЯ: Изучить действие физических и химических факторов на микроорганизмы. Ознакомиться с методами стерилизации и дезинфекции. Познакомиться с основными группами дезинфицирующих и антисептических веществ, механизмами их антибактериального действия. Познакомиться с понятием “физиология бактерий”, типами питания микроорганизмов, классификацией питательных сред. Освоить технику посева бактерий в жидкие и на плотные питательные среды.  

ЗАДАЧИ ЗАНЯТИЯ:

1. Изучить действие физических и химических факторов на микроорганизмы.

2. Ознакомиться с методами стерилизации и дезинфекции.

3. Изучить основные группы дезинфицирующих и антисептических веществ, механизмы их антибактериального действия.

4. Познакомиться с типами питания микроорганизмов и с классификацией питательных сред.

5. Освоить технику посева бактерий в жидкие и на плотные питательные среды.  

Действие физических и химических факторов на микроорганизмы

Микроорганизмы находятся в тесной зависимости от условий окружающей среды. Выделяют физические, химические и биологические факторы внешней среды, влияющие на микроорганизмы.

Физические факторы. Из физических факторов наибольшее влияние на микроорганизмы оказывают температура, влажность, излучение.

Температура. По отношению к температурным условиям микроорганизмы разделяют на мезофильные, психрофильные и термофильные. Для мезофилов оптимальные температуры роста лежат между 20 и 40°С. Область температур роста психрофилов лежит в пределах от 0 до 20°С. Термофильные бактерии растут при температурах от 40 до 98°С.

Для сохранения жизнеспособности бактерий благоприятны низкие температуры (ниже 0°С). Споры бактерий и вирусы годами сохраняются в жидком азоте (температура минус 196°С).

Влажность. Важнейшим фактором поддержания жизнеспособности микробной клетки является вода, поскольку именно в растворах протекают все биологические процессы. Вода находится в клетке в свободном или связанном состоянии.

Действие излучения. Солнечный свет может обеспечивать выраженный антимикробный эффект. Ультрафиолетовое излучение вызывает замедление роста культур, снижает скорость деления клеток, способствует развитию мутаций. УФ-лучи широко применяются для обеззараживания воздуха в помещениях, воды, отходов производства

.Ионизирующее излучение вызывает повреждения ДНК, которые принято подразделять на прямые и опосредованные, возникающие в связи с образованием свободных радикалов. Ионизирующее излучение используется для стерилизации биопрепаратов, перевязочного материала, инструментов.

Действие лазера вызывает у микроорганизмов в зависимости от дозы облучения изменения морфологических и биохимических свойств, вплоть до утраты жизнеспособности. При этом происходит денатурация белка и повреждение нуклеиновых кислот.

Влияние химических факторов на микроорганизмы. Концентрация ионов водорода в окружающей среде действует на микроорганизм непосредственно или косвенно. От значения рН зависит состояние веществ в окружающей среде. Многие органические кислоты в кислой среде находятся в недиссоциированной форме и легко проникают в клетку, становясь токсичными для нее. Границы значений рН, оптимальных для роста различных микроорганизмов, находятся в пределах от 1,0 до 11,0. В зависимости от отношения к кислотности среды прокариоты могут быть разделены на несколько групп. Для подавляющего большинства прокариотов оптимальной является среда, близкая к нейтральной. Такие организмы называют нейтрофилами. Многие нейтрофилы способны расти или выживать при значениях рН, лежащих за пределами указанного диапазона. Такие прокариоты считаются кислото- или щелочеустойчивыми. К кислотоустойчивым относятся многие грибы, микобактерии (туберкулезная палочка).

Устойчивыми к значениям рН близким к 9,0-10,0, являются многие из кишечных бактерий. У некоторых видов бактерий оптимум рН для роста находится в кислой (рН 4,0 и ниже) или щелочной (рН от 9,0 и выше) области. Такие бактерии называются ацидофильными и алкалофильными (кислотолюбивыми или щелочелюбивыми), соответственно.

Соединения и ионы, токсичные для бактерий. Действие токсичных для бактерий соединений может быть бактериостатическим или бактерицидным. Бактериостаз – это задержка роста и размножения бактерий, вызванная действием неблагоприятных химических или физических факторов. Прекращение действия фактора приводит к возобновлению роста и деления. Бактерицидные факторы вызывают гибель клеток. Во многих случаях вещество в небольших концентрациях обладает бактериостатическим, а в высоких - бактерицидным действием.

Стерилизация. Дезинфекция

Стерилизация (обеспложивание) – это полное уничтожение микроорганизмов в объектах, подвергающихся обработке. Методы стерилизации подразделяются на физические и химические.

К физическим методам относятся:

-тепловая стерилизация,

-лучевая стерилизация,

-стерилизация ультразвуком,

-ультрафильтрация.

Тепловая стерилизация основана на использовании высоких температур: стерилизация в пламени (прожигание, фламбирование), сухожаровая стерилизация, стерилизация перегретым паром под давлением - автоклавирование.

Прожигание является простым и надежным методом, однако имеет ограниченное применение.

Стерилизацию сухим жаром осуществляют в воздушных стерилизаторах (прежнее название – “сухожаровые шкафы или печи Пастера”). Стерилизуют лабораторную посуду и другие изделия из стекла, металлические инструменты, то есть объекты, которые не теряют своих качеств при высокой температуре. Режимы стерилизации: 160°С в течение 120 минут,  180°С - 40 минут.

Стерилизация паром под давлением - наиболее универсальный метод стерилизации. Проводится в автоклаве, представляющем собой герметически закрывающуюся емкость, в которую поступает перегретый пар. Автоклав снабжен датчиками контроля температуры и давления. Температура кипения воды возрастает при увеличении давления в камере: при 0,5 избыточных атмосфер температура пара составляет 111°С; при 1 избыточной атмосфере – 121°С, при 2-х атмосферах – 132 °С.

Наиболее часто используемый режим стерилизации в автоклаве -121°С (1 атм.) 40 минут. В автоклаве стерилизуют перевязочный материал, белье, коррозионно-устойчивые металлические инструменты, питательные среды, растворы.

Одной из разновидностей тепловой стерилизации является дробная стерилизация при температурах от 56°С (тиндализация) до 100°С, применяемая для обработки материалов, не выдерживающих дальнейшее нагревание. В частности, данный метод может применяться для стерилизации питательных сред. Материал нагревают в течение 30-60 минут, а затем помещают на сутки в термостат при 37°С. Процедуру повторяют трижды.  Нагревание стимулирует прорастание спор. Образовавшиеся  вегетативные формы погибают при последующем повышении температуры

Лучевая стерилизация осуществляется в специальных установках с помощью гамма-излучения. Инактивация микроорганизмов под действием гамма-лучей происходит в результате повреждения нуклеиновых кислот. Лучевая стерилизация позволяет обрабатывать сразу большое количество предметов (одноразовых шприцев, систем для переливания крови и т.д.).

Ультрафильтрация является  широко используемым методом стерилизации растворов лекарственных препаратов. Жидкости пропускаются через мембранные фильтры с диаметром пор, через которые не проходят бактерии и вирусы.

Химическая стерилизация проводится с использованием газов: оксида этилена, смеси ОБ (смеси оксида этилена и бромистого метила в весовом соотношении 1:2,5) и паров формальдегида. Эти вещества являются алкилирующими агентами, их способность в присутствии воды инактивировать активные группы ферментов, других белков, ДНК и РНК приводит к гибели микроорганизмов. Стерилизация газами осуществляется в присутствии пара при температуре от 18 до 80°С в специальных камерах.

Дезинфекция (обеззараживание) – это процедура, направленная на уничтожение патогенных микроорганизмов, предусматривающая обработку объектов внешней среды, помещений, одежды, белья, инструментария и др.

Различают три основных метода дезинфекции:

- тепловая дезинфекция;

- УФ-облучение;

- химическая дезинфекция.

Тепловая дезинфекция. Температура 100°С в течение 5 минут убивает все вегетативные формы бактерий и большинство вирусов. При добавлении в воду 2% натрия гидрокарбоната погибают и споры.

Разновидностью тепловой дезинфекции является пастеризация – прогревание при температуре ниже 100ОС. При используемом обычно режиме (60-70°С в течение 20-30 минут) погибает большинство вегетативных форм бактерий, но сохраняются споры.

Ультрафиолетовое облучение (лучи с длиной волны 200-400 нм) производится с помощью специальных бактерицидных ламп (настенных, потолочных, передвижных и др.) для обеззараживания воздуха,  и поверхностей в помещениях (операционных, перевязочных, микробиологических лабораториях), Действие ультрафиолетовых лучей приводит к разрушению ДНК микробов в результате образования тиминовых димеров.

Химическая дезинфекция проводится с помощью различных дезинфицирующих веществ.

Асептика и антисептика. Асептикой называется комплекс мероприятий, направленных на предотвращение попадания патогенных микроорганизмов в стерильную зону (операционная рана, питательная среда и т.д.).

Антисептикой называется комплекс мероприятий, направленных на снижение концентрации микроорганизмов на поверхности или в глубине тканей организма (кожные покровы, операционная рана).   

Основные группы дезинфицирующих и антисептических веществ, механизм их антибактериального действия

1. Спирты, или алкоголи (этанол, изопропанол и др.). Как антисептики, наиболее эффективны в виде 60-70%-ных водных растворов. Спирты денатурируют белки и растворяют липиды. Эффективны в отношении вегетативных форм большинства бактерий, однако споры бактерий и грибов, а также некоторые вирусы к ним устойчивы.

2. Галогены и галогенсодержащие препараты (препараты йода и хлора)
широко    применяют    как    дезинфектанты    и    антисептики.    Эти    препараты
взаимодействуют с гидроксильными группами белков,  нарушая их структуру.
Препараты хлора и йода являются окислителями.

В качестве антисептиков для обработки операционного поля применяют спиртовый раствор  йода в  этаноле,  йодинол.
Хлорсодержащие препараты широко применяют для обеззараживания воды. Взаимодействуя с водой, хлор образует хлорноватистую кислоту, которая является сильным окислителем. К хлорсодержащим средствам, используемым для дезинфекции относятся хлорная известь (
NaClO), хлорамин Б, хлоргексидина биглюконат (гибитан).

3. Альдегиды алкилируют сульфгидрильные, карбоксильные и аминогруппы   белков и других органических соединений, вызывая гибель микроорганизмов.  Альдегиды широко применяют как консерванты. Наиболее известные -формальдегид (8%) и глутаральдегид (2-2,5%) – проявляют раздражающее действие (особенно пары), ограничивающее их широкое применение. Растворы формальдегида обладают дезинфицирующим и дезодорирующим эффектами. Их применяют для дезинфекции инструментов. Мыльный раствор формальдегида (лизоформ) применяют для спринцеваний в гинекологической практике, для дезинфекции рук и помещений.

Уротропин (гексаметилентетрамин) в кислой среде организма расщепляется с выделением формальдегида; последний, выделяясь с мочой, оказывает антисептическое действие. Применяют при инфекционных процессах мочевыводящих и желчевыводящих путей, кожных заболеваниях. Входит в состав комбинированных препаратов (кальцекс, уробесал).

4. Кислоты и щёлочи применяют как антисептики. Среди кислот наиболее
известны борная, бензойная, уксусная и салициловая кислоты. Применяют для
лечения поражений, вызванных патогенными грибами и бактериями. Наиболее распространена салициловая кислота, применяемая в спиртовых растворах (1-2%), присыпках, мазях, пастах (например, для лечения дерматомикозов); оказывает также в зависимости от концентрации отвлекающее, раздражающее и кератолитическое действие. Из щелочей наиболее распространён раствор аммиака (нашатырный спирт содержит 9,5-10,5% аммиака), применяемый для обработки рук в хирургической практике (0,5% раствор нашатырного спирта).

Органические кислоты (бензойная, салициловая, молочная, аскорбиновая, пропионовая) широко применяются в качестве консервантов в пищевой и фармацевтической промышленности.

5. Соли тяжелых металлов связываются с белками и другими органическими соединениями.  В  качестве антисептиков применяют нитрат серебра (ляпис), сульфат меди (медный купорос) и хромат ртути (мербромин).

6. Фенолы   и   их   замещенные   производные    денатурируют белки, повреждают клеточные мембраны и нарушают структуру
клеточной стенки бактерий (гексахлорофен, резорцин,
хлорофен, тимол, салол).

7. Поверхностно-активные вещества включают анионные (мыла) и катионные детергенты. Мыла обеспечивают механическое удаление микроорганизмов с поверхностей кожи и объектов внешней среды. Из катионных детергентов наиболее широко используются четвертично-аммониевые соединения (ЧАС), обладающие антимикробной активностью - они взаимодействуют с фосфолипидами мембран, нарушая их функции. Применяют для дезинфекции и антисептики.

8. Газы. Для  уничтожения  спор  микроорганизмов  при  стерилизации
предметов из пластмасс применяют окиси этилена и пропилена под давлением при
30-60°С. Механизм действия связан со способностью окиси этилена алкилировать белки. В частности, повреждению подвергаются сульфгидрильные группы вегетативных форм бактерий и карбоксильные группы оболочек спор.

9. Красители. В качестве антисептиков давно применяют различные красители  (например,   бриллиантовый  зелёный,   метиленовый  синий,  риванол,
основный   фуксин).   Бриллиантовый   зеленый   и   некоторые   другие   красители
взаимодействуют с нуклеиновыми кислотами, нарушая их функции.

10. Окислители. Механизм антимикробной активности связан с окислением метаболитов и ферментов микроорганизмов, либо денатурацией микробных белков. Наиболее распространённые окислители, применяемые как антисептики, - перекись водорода и перманганат калия.

Физиология бактерий

Физиология бактерий – это раздел микробиологии, изучающий химический состав, питание, дыхание, рост и размножение бактерий.

Химический состав бактерий. Микроорганизмы имеют сложное химическое строение. 70% от общей массы бактериальной клетки составляет вода. Часть воды находится в свободном состоянии, а часть - в связанном. В состав бактериальных клеток входят макроэлементы (азот, углерод, кислород и водород), микроэлементы (калий, кальций, магний, натрий, сера, фосфор, хлор) и ультрамикроэлементы (бор, ванадий, железо, кобальт, медь, цинк).

Азотсодержащие вещества представлены белками. Белки составляют 50-80% сухого вещества бактериальных клеток. Функции белков разнообразны: структурная, каталитическая, двигательная, транспортная, защитная.

Нуклеиновые кислоты представляют собой высокомолекулярные биологические полимеры, построенные из мононуклеотидов. Содержание нуклеиновых кислот в бактериальной клетке может быть от 10 до 30% сухого вещества. Нуклеиновые кислоты бактерий представлены РНК (рибонуклеиновая кислота) и ДНК (дезоксирибонуклеиновая кислота). РНК в основном содержится в рибосомах, ДНК - в нуклеоиде. ДНК является носителем наследственной информации бактерий.

Липиды - истинные жиры, липоиды - жироподобные вещества. Риккетсии, дрожжи, микобактерии и грибы содержат до 40% липидов. У других групп бактерий содержание липидов составляет 3-7%. С липидами связана кислотоустойчивость некоторых бактерий, в частности, микобактерий.  

Содержание углеводов составляет 12-18% сухого вещества. Углеводы представлены многоатомными спиртами (сорбит, маннит, дульцит), полисахаридами (гликоген, декстрин, целлюлоза), моносахаридами (глюкоза, глюкуроновая кислота и др.). Углеводы выполняют энергетическую роль в бактериальной клетке.

Питание бактерий

1. Углеродное питание. По источнику получения  углерода микроорганизмы подразделяются на две группы:

- автотрофы (аутотрофы) - микроорганизмы, способные усваивать углерод из неорганических соединений - углекислоты воздуха или карбонатов. Автотрофы из простых соединений синтезируют белки, полисахариды, нуклеиновые кислоты, витамины и другие структурные и функциональные молекулы.

- гетеротрофы - микроорганизмы, использующие углерод только из готовых органических соединений - вызывают процессы брожения, гниения, а также заболевания человека и животных. Гетеротрофы подразделяются на две подгруппы: сапрофиты (получают углерод из останков организмов или продуктов) и паразиты (живут на поверхности или внутри организма хозяина и питаются за его счет).

2. Азотное питание микроорганизмов. По способу усвоения азота бактерии подразделяются на 4 группы:

1. Протеолитические - способные расщеплять белки и пептиды;

2.Дезаминирующие - способные отщеплять аминогруппы только у свободных аминокислот;

3. Нитритно-нитратные - усваивающие окисленные формы азота;

4. Азотфиксирующие - обладающие свойством усваивать атмосферный азот.

3. Потребность в минеральных веществах. Серу бактерии получают из сульфатов или из некоторых аминокислот (цистин, цистеин). Фосфор входит в состав фосфорнокислых солей. Калий, магний и железо микроорганизмы также получают из различных солей. В бактериальной клетке сера входит в состав аминокислот (цистеин, метионин), витаминов и кофакторов (биотин, липоевая кислота и др.), а фосфор - необходимый компонент нуклеиновых кислот, фосфолипидов, коферментов.

4. Прототрофы и ауксотрофы. Гетеротрофные бактерии, способные расти на питательных средах, в состав которых входит одно органическое вещество в качестве источника углерода, а остальные химические элементы содержатся в составе неорганических соединений, называются прототрофами.

Бактерии, для роста и размножения которых требуются дополнительные органические вещества (факторы роста), называются ауксотрофами. К факторам роста относятся аминокислоты, витамины, пурины, пиримидины, пентозы, гексозы, липиды. Универсальным источником факторов роста является сыворотка крови животных, которую добавляют в питательные среды для культивирования ауксотрофов.

Транспорт питательных веществ в бактериальную клетку.

1. Пассивная диффузия (осмос) - поступление питательных веществ из окружающей среды через клеточную стенку и цитоплазматическую мембрану в результате разницы концентраций питательных веществ внутри бактериальной клетки и в питательной среде. Процесс осуществляется по направлению градиента концентрации вещества без затрат энергии АТФ. Посредством пассивной диффузии в клетку  поступает вода и некоторые ионы.

2. Облегченная диффузия.  Осуществляется по направлению градиента концентрации с участием специальных белков-переносчиков, которые называются  пермеазами. Пермеаза на внешней стороне цитоплазматической мембраны специфически связывается с молекулой субстрата. На внутренней поверхности мембраны происходит диссоциация комплекса пермеаза - субстрат. При этом транспортируемое вещество высвобождается в цитоплазму, а пермеаза вновь принимает первоначальное положение. Облегченная диффузия осуществляется без затрат энергии АТФ. 

3. Активный транспорт. Осуществляется против градиента концентрации с помощью пермеаз и с затратой энергии АТФ. По этому механизму в бактериальные клетки поступает основное количество питательных веществ.

4. Перенос групп. Сущность этого механизма состоит в переносе питательного вещества внутрь клетки против градиента концентрации с помощью пермеаз в химически измененной форме с затратой энергии АТФ. По этому механизму внутрь клетки поступают крупные молекулы питательных веществ.

Питательные среды, их классификация

Микроорганизмы культивируют на питательных средах. Питательные среды подразделяются на группы в зависимости от свойств.

По физическому состоянию питательные среды подразделяются на:

- жидкие среды;

- полужидкие среды;

- твердые (плотные) среды;

Жидкие среды представляют собой настои, отвары, бульоны, приготовленные на основе мяса, рыбы, овощей (естественные среды), а также  композиции определенных концентраций химических соединений (искусственные среды). Полужидкие среды получают путем добавления к жидким средам 0,5-0,9% агар-агара (желеобразующее вещество, получаемое из морских водорослей). К плотным питательным средам относят среды, содержащие 2-3% агара.

По сложности питательные среды подразделяются на:

- простые, или обычные среды (пептонная вода, мясо-пептонный бульон, мясо-пептонный агар);

- сложные, или специальные среды (кровяной агар, асцитический агар и бульон, мясо-пептонный сахарный бульон, сывороточный агар и бульон, свернутая сыворотка, кровяной бульон).

По происхождению питательные среды подразделяются на:

- естественные среды;

- полусинтетические среды;

- синтетические среды.

Естественные питательные среды - это природные органические среды непостоянного состава, которые включают продукты животного или растительного происхождения. К ним относятся пептоны, кровь, отвары и экстракты, полученные из природных субстратов (мясо, рыба, крупы).

Полусинтетические среды кроме органических и неорганических веществ известного состава содержат продукты природного происхождения (картофельная среда с глюкозой, дрожжевая среда).

Синтетические питательные среды состоят из определенных количеств органических и неорганических химических соединений известного состава.

По набору питательных веществ выделяют:

- минимальные среды, которые содержат лишь источники питания,
достаточные для роста;

- богатые среды, в состав которых входят многие дополнительные
вещества.

В зависимости от назначения питательных сред различают:

-основные среды;

- элективные (селективные) среды;

- дифференциально-диагностические среды;

- накопительные среды (среды обогащения).

К основным средам относятся мясо-пептонный агар и мясо-пептонный бульон. На этих средах растет большинство бактерий.

Дифференциально-диагностические среды - это сложные среды, позволяющие изучать биохимические свойства бактерий. Эти среды используются для определения вида бактерий.

Элективные (селективные) питательные среды содержат вещества, подавляющие рост одних бактерий, и не влияющие на рост других бактерий. Эти среды служат для выделения определенного вида бактерий из смешанных популяций.

Накопительные питательные среды (среды обогащения) - это среды, на которых определенные виды культур растут быстрее и интенсивнее сопутствующих.

Бактериологический метод исследования

Целью бактериологического исследования является выделение чистой культуры возбудителя, его идентификация и определение чувствительности к антибактериальным препаратам.

Бактериологический метод исследования включает 4 этапа:

- посев исследуемого материала на питательные среды;

- выделение чистой культуры возбудителя;

- идентификация возбудителя (определение вида бактерий) и определение чувствительности к антибактериальным препаратам;

- учет результатов и выдача заключения.   

Первый этап. Техника посева материала на питательные среды

Материалом для бактериологического исследования служат: кровь, моча, отделяемое раны, мокрота, фекалии, рвотные массы, смывы с кожи и слизистых оболочек и др. Поступивший в лабораторию материал подвергают бактериологическому исследованию в тот же день.

На первом этапе исследуемый материал высевают в жидкую питательную среду (для накопления возбудителя и определения характера его роста) и на плотную питательную среду (для выделения чистой культуры возбудителя).   

Техника посева зависит от характера исследуемого материала и консистенции питательной среды.

Жидкий материал для посева берут бактериологической петлей или стерильной пипеткой. Все манипуляции проводят вблизи пламени горелки. Бактериологическую петлю перед взятием материала и по окончании посева стерилизуют прокаливанием в пламени горелки. Пипетки после посева погружают в дезраствор.

При посеве в жидкую питательную среду петлю с материалом погружают в среду и легким покачиванием смывают материал. Пипетку погружают в среду и материал сливают.

При посеве на скошенный питательный агар в пробирке петлю с материалом вносят вблизи пламени горелки в пробирку и материал штрихом распределяют по поверхности агара.     

Посев материала на агар в чашке Петри проводят с помощью бактериологической петли, шпателя или тампона. Посев бактериологической петлей проводят штрихом по поверхности агара. С помощью шпателя или тампона исследуемый материал распределяется по поверхности среды круговыми движениями.

Для посева в толщу питательной среды материал вносят в стерильную чашку Петри или в пробирку, добавляют остуженный (40-45ОС) расплавленный агар и перемешивают.  

Посев уколом в столбик питательной среды проводят с помощью бактериологической иглы или петли путем прокалывания столбика среды.