15445

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОЕМКОСТИ КОНДЕНСАТОРА

Лабораторная работа

Физика

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОЕМКОСТИ КОНДЕНСАТОРА Методические указания к лабораторной работе №8 по физике Указания содержат краткое описание рабочей установки и методики определения электроемкости конденсатора методом моста Сотти. Методические указания предназна...

Русский

2013-06-13

352 KB

133 чел.

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОЕМКОСТИ КОНДЕНСАТОРА

Методические указания к лабораторной работе №8 по физике

Указания содержат краткое описание рабочей установки и методики определения электроемкости конденсатора методом моста Сотти.

Методические указания предназначены для студентов инженерных специальностей всех форм обучения в лабораторном практикуме по физике (раздел «Электричество»).

Печатается по решению методической комиссии факультета

«Нанотехнологии и композиционные материалы»

Научный редактор к.ф.-м.н., доц. Г. Ф. Лемешко

© Издательский центр ДГТУ, 2011

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОЕМКОСТИ КОНДЕНСАТОРА

Цель работы: 

1. Ознакомление с мостовым методом измерения  электрической емкости конденсатора.

2. Определение законов сложения емкостей при параллельном и последовательном соединении конденсаторов.

Оборудование: источник переменного тока, магазин эталонных конденсаторов, измеряемые неизвестные конденсаторы, осциллограф, реохорд (реостат, включенный как потенциометр).

  1.  Теоретическая часть

Если уединенному проводнику сообщить электрический заряд , то потенциал проводника примет некоторое значение , причем , т.е. . Следовательно,

-

электрическая емкость уединенного проводника. Единица ёмкости – фарад (Ф).

Конденсатором называется система из двух близко расположенных проводников (обкладок), разделенных слоем диэлектрика. В зависимости от формы обкладок конденсаторы бывают плоские, цилиндрические и сферические.

Под емкостью  конденсатора понимается физическая величина, равная отношению заряда , накопленного в конденсаторе, к разности потенциалов () между его обкладками:

Электроемкость конденсатора зависит от его формы, геометрических размеров и диэлектрической проницаемости среды, заполняющей пространство между обкладками. В случае плоского конденсатора

                                             ,                                        (1)

где =8,85·10–12 Ф/м – электрическая постоянная; – диэлектрическая проницаемость среды, заполняющей пространство между обкладками; – расстояние между пластинами, - площадь обкладок.

Другой важнейшей характеристикой конденсатора является напряжение пробоя, т.е. минимальная разность потенциалов  на обкладках, при которой происходит электрический разряд через слой диэлектрика в конденсаторе. Пробивное напряжение зависит от формы и размеров обкладок и от свойств диэлектрика.

При практическом использовании конденсаторов для получения необходимой емкости собирают батареи из отдельных элементов, соединяя их последовательно или параллельно.

При последовательном соединении конденсаторов заряд на обкладках остается величиной постоянной:, напряжения суммируются:

Тогда электроемкость:

.                                                (2)

  

При последовательном соединении на каждый из конденсаторов приходится лишь часть разности потенциалов Δφ напряжения источника, вследствие чего уменьшается возможность пробоя конденсаторов.

При параллельном соединении конденсаторов напряжение остается величиной постоянной: ,  заряд батареи конденсаторов:  .

Тогда общая электроемкость:

.                                                   (3)

 Пробивное напряжение такой батареи равно пробивному напряжению того из конденсаторов, у которого оно наименьшее.

  1.  Использование моста Сотти для экспериментального определения емкости конденсатора  и вывод рабочей формулы

В данной работе емкость измеряется при помощи мостовой схемы – моста Сотти (рис. 1).

– магазин емкостей (эталонная емкость); – конденсатор, емкость которого надо измерить; источник переменного тока ();  индикатор нуля (ИН, в данном случае – осциллограф); реохорд (реостат, включенный как потенциометр);  и  - плечи реохорда;  и - сопротивления плеч  и  реохорда.

Если источник тока включен, то в цепи, в том числе и на участке , течет ток, а на экране осциллографа видна синусоида. Подбором сопротивлений  и  (путем перемещения движка реостата) можно добиться равновесия моста, при котором разность потенциалов () равна нулю (состояние равновесия моста), а на экране осциллографа синусоида сменяется горизонтальной прямой. После перехода через положение равновесия амплитуда синусоиды снова увеличивается.

При равновесии моста  потенциалы точек и равны ().  Это значит, что разность потенциалов на участке  по величине равна разности потенциалов на участке :

                                            .                           (4)

По аналогичным соображениям:    

                                          .                            (5)

Токи в ветвях  и,  и  будут равны по величине:    

                                               ,                                       (6)

                                              .                                        (7)

Сопротивление участка цепи переменного тока, содержащего конденсатор, определяется по формуле

                                              ,                                          (8)

где – электроемкость конденсатора; ω – циклическая частота.

К однородным участкам цепи АЕ, ЕВ, АD и DВ применим закон Ома в виде:    

       ,

тогда равенства (6) и (7) примут вид:

         ,                        (9)

                                             .                       (10)

Разделив почленно равенство (9) на (10), учитывая при этом равенства (4), (5) и (8) получим:

.                            (11)

Поскольку  сопротивления плеч потенциометра  и  пропорциональны их длине, условие равновесия запишется в виде:

                                         ,                            (12)

где - длина реохорда, - длина плеча реохорда.

 

3. Порядок выполнения работы

1. Собрать цепь по схеме, изображенной на рис. 1, подключив конденсатор неизвестной электроёмкости .

2.  Включить источник питания и осциллограф, дождаться появления на экране осциллографа синусоиды.

3. На магазине емкостей установить значение емкости 0,5 мкФ. С помощью движка реостата добиться  на экране осциллографа прямой линии. Внести значения , , в таблицу 1.

4.  По формуле (12) вычислить . Результаты занести в таблицу 1.

5.  Повторить пункты 1-4 для = 2,0; 4,0 мкФ. Записать значения , , и  в таблицу 1.

6. Повторить п. 1-5 для конденсатора неизвестной электроёмкости .

7. Рассчитать средние значения неизвестных емкостей, абсолютную и относительную   погрешности  измерений и занести в таблицу 1.

8. Соединить измеренные конденсаторы  и  последовательно и повторить пункты 1-5. Записать значения , ,   в таблицу 2.

9. Рассчитать по формуле (12) . Результаты занести в таблицу 2.

  1.  Найти общую электроемкость при последовательном соединении  по формуле (2)  для средних значений и .
  2.  Оценить относительную погрешность:

                                                     (13)

12. Соединить измеренные конденсаторы ипараллельно и измерить их общую емкость по пунктам 1-5. Записать значения  , ,  в таблицу 2.

13. Рассчитать по формуле (12) . Результаты занести в таблицу 2.

14. Найти общую электроемкость  при параллельном соединении по формуле (3) для средних значений и .

15. Оценить относительную погрешность по формуле (13)

Таблица 1.

[  ]

мм

мм

мкФ

мкФ

мкФ

%

Емкость первого конденсатора :

1

2

3

ср

Емкость второго конденсатора :

1

2

3

ср

Таблица 2.

[ ]

мм

мм

мкФ

мкФ

мкФ

%

мкФ

%

При последовательном соединении и :

1

2

3

ср

При параллельном соединении и :

1

2

3

ср

Контрольные вопросы

Что называется электроемкостью уединенного проводника? От чего она зависит?

В каких единицах измеряется электроемкость?

Что представляет собой конденсатор?

Опишите устройство и принцип действия моста Сотти.

Три одинаковых конденсатора один раз соединены последовательно, другой – параллельно. Во сколько раз и когда электроемкость батареи будет больше?

Написать формулу электроемкости плоского конденсатора.

Как определить общую электроемкость при параллельном и последовательном соединении?

Какой радиус должен иметь проводящий шар, чтобы в вакууме его емкость равнялась 1 Ф?

10. Можно ли, имея два одинаковых конденсатора, получить емкость вдвое меньшую и вдвое большую, чем у одного из них? Если можно, то, как это сделать?

Рекомендуемая литература

  1.  Трофимова Т. И. Курс физики.- М.: Высш. шк., 2004
  2.  Электростатика. Постоянный электрический ток: учеб. пособие.                               /B.C. Кунаков, И.В. Мардасова, О.М. Холодова, В.А. Тызыхян.                                – Ростов н/Д: Издательский центр ДГТУ, 2010. – 66 с.
  3.  Яворский Б. М., Детлаф А. А. Справочник по физике.-М.:Наука, 2006
  4.  Калашников С.Г. 6-е изд., стереот. - М.: ФИЗМАТЛИТ, 2003.- 624 с.

Редактор А.А.Литвинова

В печать

Объём 0,7 усл.п.л. Офсет. Формат 60х84/16.

Бумага тип №3. Заказ №       . Тираж  50 экз . Цена           

Издательский центр ДГТУ

Адрес университета и полиграфического предприятия:

344010, г.Ростов-на-Дону, пл.Гагарина,1.


 

А также другие работы, которые могут Вас заинтересовать

3408. Геометрический расчет и конструирование зубчатых колес 2 MB
  Геометрический расчет и конструирование зубчатых колес Геометрический расчет выполняется в минимальном объеме. Определению подлежат: делительные d1 и d2 и начальные dw1 и dw2 диаметры колес; коэффициенты смещения X1 и X2; диаметры окружностей вершин...
3409. Hазработка технологического процесса штамповки шестерни 165.22 KB
  В данной курсовой работе представлена разработка технологического процесса штамповки шестерни. Курсовая работа состоит из расчетно-пояснительной записки и графической части. В пояснительной записке выбирается метод штамповки, и метод нагрева заготов...
3410. Краны башенные. Строение и назначение 113.09 KB
  Назначение башенных кранов. Башенные краны широко применяются в гражданском, промышленном, энергетическом и гидротехническом строительстве для монтажных работ и работ по вертикальному и горизонтальному перемещению различных грузов. Если на строитель...
3411. Быстрорежущие стали 65.05 KB
  Классификация быстрорежущих сталей Быстрорежущие стали широко применяют для изготовления режущего инструмента, работающего в условиях значительного силового нагружения и нагрева (до 600–640 °С) режущих кромок. К этой группе сталей относятся...
3412. Исследование электромеханических свойств двигателя постоянного тока независимого возбуждения 306 KB
  Исследование электромеханических свойств двигателя постоянного тока независимого возбуждения. Исследовать влияние сопротивления цепи якоря, напряжения питания и магнитного потока на электромеханические и механические свойства двигателя постоянного тока независимого возбуждения, а также изучить способы изменения направления вращения якоря двигателя, построить естественные и искусственные характеристики двигателя.
3413. Тепловой расчет двигателя на режиме максимальной мощности 938.05 KB
  Целью курсового проекта по дисциплине «Автомобильные двигатели» является закрепление знаний, полученных студентами при изучении всех разделов дисциплины. В первой части проекта требуется произвести тепловой расчет двигателя на режиме максим...
3414. Электростатическое поле 336.5 KB
  Электростатическое поле. Электрические заряды, их свойства и классификация. Закон Кулона. Напряженность электростатического поля. Принцип суперпозиции электрических полей. Поток вектора. Теорема Гаусса для потока вектора  и ее...
3415. Электричество и магнетизм. Колебания и волны 392 KB
  Учебное пособие включает программу по второй части курса физики «Электричество и магнетизм. Колебания и волны», перечень теоретических вопросов и типовых задач по каждой теме для подготовки к семинарским занятиям, собеседованиям, экзаменам и контрол...
3416. Динамические системы 203.5 KB
  Динамические системы Динамической системой наз. система вида. Начальные условия. Для существования и единственности решения задачи, достаточно потребовать непрерывность правых частей, а также существование и н...