15446

ОПРЕДЕЛЕНИЕ СОСТАВЛЯЮЩИХ ИНДУКЦИИ МАГНИТНОГО ПОЛЯ ЗЕМЛИ

Лабораторная работа

Физика

ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ ИНДУКЦИИ МАГНИТНОГО ПОЛЯ ЗЕМЛИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ №16ПО ФИЗИКЕ Раздел Электричество и магнетизм Указания содержат краткое описание рабочей установки и методику определения горизонтально

Русский

2014-09-23

349 KB

27 чел.

ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ ИНДУКЦИИ МАГНИТНОГО ПОЛЯ ЗЕМЛИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ №16
ПО ФИЗИКЕ

(Раздел «Электричество и магнетизм»)

Указания содержат краткое описание рабочей установки и методику определения горизонтальной составляющей индукции магнитного поля Земли. Методические указания предназначены для студентов инженерных специальностей всех форм обучения в лабораторном практикуме по физике (раздел «Электричество и магнетизм»).

Печатается по решению методической комиссии факультета
«Наноте
хнологии и композиционные материалы»

Научный редактор     д.т.н., проф. В.С. Кунаков 

©  Издательский центр ДГТУ, 2012

Цель работы: Определить горизонтальную составляющую индукции магнитного поля Земли.

Приборы и принадлежности: тангенс-гальванометр, миллиамперметр, реостат, источник тока, выпрямитель, переключатель.

 

Краткая теория

Земля представляет собой огромный магнит, полюса которого лежат вблизи географических полюсов: вблизи северного географического полюса лежит южный магнитный , а вблизи южного географического – северный магнитный полюс .

Вектор индукциимагнитного поля Земли на экваторе направлен горизонтально, а у магнитных полюсов – вертикально. В остальных точках земной поверхности магнитное поле направлено под некоторым углом к горизонтальной плоскости. Существование магнитного поля в любой точке Земли можно установить с помощью магнитной стрелки.

Для нахождения горизонтальной составляющей индукции  магнитного поля Земли (т.е. величины проекции вектора индукции  на горизонтальную плоскость) используется тангенс-гальванометр, который представляет собой катушку радиусом  с числом витков, плотно прилегающих друг к другу, расположенную вертикально в плоскости магнитного меридиана. Толщина обмотки во много раз меньше радиуса катушки, и ею можно пренебречь. В центре катушки в горизонтальной плоскости расположена магнитная стрелка, которая  может поворачиваться вокруг вертикальной оси. Магнитная стрелка при отсутствии тока в катушке будет расположена по магнитному меридиану Земли N-S (рис.1). Поворотом катушки около вертикальной оси можно добиться совмещения плоскости катушки с плоскостью магнитного меридиана, т.е. плоскость катушки устанавливается перпендикулярно горизонтальной плоскости так, чтобы она совпадала с направлением магнитной стрелки. Если после такой установки катушки по ней пропустить ток , то магнитная стрелка повернется на некоторый угол , установившись вдоль индукции результирующего поля (N1-S1) (см.рис.1), т.е. по диагонали параллелограмма, сторонами которого являются вектор индукции магнитного поля кругового тока  и горизонтальная составляющая магнитного поля Земли . Объясняется это тем, что на магнитную стрелку будут действовать два поля: горизонтальная составляющая магнитного поля Земли  и магнитное поле , созданное током (см.рис.1). Согласно принципу суперпозиции полей .

Направление вектора  определяется по правилу правого винта, а модуль – по формуле, вытекающей из закона Био-Савара-Лапласа:

,                              (1)

где - сила тока, протекающего в катушке, - число витков катушки, - средний радиус катушки, - магнитная постоянная.

Из рис.1 видно, что

 .        (2)

Подставляя (1) в (2), получаем

                                                ,                                      (3)

где - угол отклонения магнитной стрелки.

Описание установки

Установка для определения горизонтальной составляющей магнитного поля Земли представлена на рис. 2. Тангенс-гальванометр состоит из катушки, укрепленной на вращающейся подставке. В центре катушки на вертикальной оси укреплен легкий круг (лимб) с делениями, в центре которого расположена стрелка. На электрической схеме: источник тока, - выпрямитель, - реостат,  – миллиамперметр,  – переключатель, меняющий направление тока, проходящего по виткам катушки тангенс-гальванометра.

Рис.2

Порядок выполнения работы

  1.  Собрать электрическую цепь по схеме, изображённой на рис. 2.
  2.  Поворачивая подставку тангенс-гальванометра установить стрелку компаса на 0о (180о). В этом случае витки катушки  расположены в плоскости магнитного меридиана.
  3.  Определить цену деления миллиамперметра .
  4.  Установить переключатель  в положение 1.
  5.  Включить выпрямитель .

6.  Двигая ползунок реостата , добиться поворота стрелки на угол(первое значение угла). Записать соответствующее этому углу число делений , на которое отклонилась стрелка миллиамперметра .

7.  Рассчитать силу тока по формуле .

8.  Проделать аналогичные измерения для всех углов, указанных в таблице.

9.  Результаты занести в таблицу.

10. Установить переключатель в положение 2  и повторить все измерения п.п. 5-9 для силы тока .

11. Вычислить среднее значение силы тока для каждого угла по формуле .

12. Рассчитать для каждого угла горизонтальную составляющую индукции по формуле (3). ( значения  и  указаны на установке).

13. Рассчитать среднее значение горизонтальной составляющей индукции магнитного поля Земли .

14. Рассчитать абсолютные погрешности каждого измерения по формуле .

15. Рассчитать среднее значение абсолютной погрешности .

16.  Рассчитать относительную погрешность по формуле

.

17. Результат эксперимента представить в виде:

                               

Таблица

 

мА

дел

град

  -

дел

мА

дел

мА

мА

Тл

Тл

%

1

20

0,36

2

25

0,47

3

30

0,58

4

35

0,70

5

40

0,84

6

45

1,00

7

50

1,19

8

55

1,43

9

60

1,73

ср

Контрольные вопросы (для защиты)

  1.  Как устанавливается магнитная стрелка в магнитном поле? Почему?
  2.  Сформулируйте закон Био-Савара-Лапласа. Как определить направление векторов индукции магнитного поля, образованного круговым током?
  3.  Объясните устройство и принцип действия тангенс-гальванометра.
  4.  Почему следует ориентировать катушку тангенс-гальванометра в направлении магнитного меридиана?
  5.  В чем заключается принцип суперпозиции магнитных полей?

Рекомендуемая  литература

  1.  Федосеев В. Б. Физика / В. Б. Федосеев. – Ростов н/Д: Феникс, 2009.

2. Савельев И.В. Курс общей физики. Т. 3 / И.В. Савельев. – СПб.: Лань, 2006.

3. Трофимова Т.И. Курс физики / Т.И. Трофимова. – М.: Высш. шк, 2004.

  1.  Кунаков В.В. Магнетизм: учеб.-метод. пособие / В.В. Кунаков [и др.]. – Ростов н/Д: Издательский центр ДГТУ, 2011.

Редактор Т.В. Колесникова

________________________________________________________

В печать 19.01.2012.

Объём 0,5 усл. п.л. Офсет. Формат 60x84/16.

Бумага тип №3. Заказ №     .Тираж 60 экз. Цена свободная

________________________________________________________

Издательский центр ДГТУ

Адрес университета и полиграфического предприятия:

344000, г. Ростов-на-Дону, пл. Гагарина, 1


 

А также другие работы, которые могут Вас заинтересовать

14624. Решение прямой задачи кинематики манипулятора 294 KB
  Лабораторная работа №3: Вариант 1 Решение прямой задачи кинематики манипулятора. Цель работы: решение прямой задачи о положении манипуляционной системы на ЭВМ на основе формализованного описания кинематических цепей Геометрические характеристики звеньев: ...
14625. Изучение метода преобразования систем координат промышленных роботов и кодирования кинематических цепей «иркутским методом» на примере робота МП-9С (Ритм -01-02) 196.5 KB
  Лабораторная работа №2: Вариант 1 Изучение метода преобразования систем координат промышленных роботов и кодирования кинематических цепей иркутским методом на примере робота МП9С Ритм 0102 . ЦЕЛЬ РАБОТЫ: – выбор абсолютной и связанных систем координат ПР; –
14626. Изучение методики разработки программ в системе MATLAB при изучении кинематического управления роботами 156.5 KB
  Лабораторная работа №1: Вариант 1 Изучение методики разработки программ в системе MATLAB при изучении кинематического управления роботами. Изучение методики разработки программ в системе MATLAB при изучении кинематического управления роботами Цель работы: Изу...
14627. ИЗУЧЕНИЕ ДЕЙСТВИЯ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ НА ВЕЩЕСТВО И ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ УЛЬТРАЗВУКА 54.5 KB
  2 ЛАБОРАТОРНАЯ РАБОТА ИЗУЧЕНИЕ ДЕЙСТВИЯ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ НА ВЕЩЕСТВО И ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ УЛЬТРАЗВУКА ЦЕЛЬ РАБОТЫ: изучить свойства ультразвука его взаимодействие с веществом; ознакомиться с устройством и работой ультразву...
14628. ДИНАМИЧЕСКИЕ ИСПЫТАНИЯ НА УДАРНЫЙ ИЗГИБ 452 KB
  ДИНАМИЧЕСКИЕ ИСПЫТАНИЯ НА УДАРНЫЙ ИЗГИБ Методические указания к лабораторным и практическим работам по специальным дисциплинам для студентов металловедческих специальностей Данные методические указания включают в себя понятие ударной вязкости и методы ее опред
14629. Особенности устройства и работы твердотельных лазеров 1.22 MB
  Методические указания к лабораторным работам Особенности устройства и работы твердотельных лазеров Твердотельные лазеры ТТЛ с которых в 1960 г началась лазерная эра первым в мире был сконструирован ТТЛ на кристалле рубина 1960г; в 1961 г был создан лазер на неодимовом...
14630. Трёхступенчатая токовая защита линий с односторонним питанием 550 KB
  Лабораторная работа Трёхступенчатая токовая защита линий с односторонним питанием Цель работы: ознакомление с принципом работы трехступенчатой токовой защиты расчёт параметров срабатывания защиты и реле проверка селективности чувствительности и быстродейст...
14631. Определение потерь тепла через систему охлаждения автомобильного двигателя 534 KB
  Лабораторная работа №4 Определение потерь тепла через систему охлаждения автомобильного двигателя Цель работы: Изучение теплового баланса двигателя и практическое определение потерь тепла через систему охлаждения автомобильного двигателя. Оборудование: дви
14632. Определение твердости материалов вдавливанием 1.3 MB
  Определение твердости материалов вдавливанием: Методическая разработка к лабораторным и практическим работам по специальным дисциплинам / В.А.Хотинов И.Ю.Пышминцев. Екатеринбург: ГОУ ВПО УГТУУПИ 2004. 19 с. Рассмотрены методы определения твердости по Бринеллю Викке