1550

Установка числа корней полинома (с учетом их кратности)

Контрольная

Математика и математический анализ

Бесконечная и конечная многоугольные области. Геометрические условия, определяющие распределение корней. Алгебраические соотношения, определяющие распределение корней.

Русский

2013-01-06

101.35 KB

5 чел.

  1.  Постановка задачи.

Будем считать, что на комплексной плоскости задана конечная или бесконечная многоугольная область. Примеры таких областей приведены на рисунке 1. Требуется установить число корней полинома (с учетом их кратности)

 

                                                                                                         (1.1)

внутри области   вне области и на границе области .

Рисунок 1 – Бесконечная и конечная многоугольные области

Многоугольную область будем считать односвязной и симметричной относительно вещественной оси. Границу области в верхней полуплоскости зададим множеством вершин , где определяет множество ребёр многоугольной области  . Область будет определять как часть комплексной плоскости,  расположенную слева от ребёр при их последовательном прохождении от до . Будем считать, что область конечна, если , и бесконечно, если . В последнем случае вершины и определяют не отрезок, а полупрямую.


  1.  Геометрические условия, определяющие распределение корней.

Геометрические условия, определяющие распределение корней полинома относительно конечной и бесконечной многоугольных областей, сформулированы соответственной в виде теорем 2.1 и 2.2.

Теорема 2.1. Число корней  полинома (1.1), расположенных внутри конечной многоугольной области, вне области и на границе области , определяется выражениями

; ,    (2.1)

где - число квадрантов, проходимых годографом полинома при изменении  вдоль границы области в верхней полуплоскости с обходом корней, лежащих на границе.

Теорема 2.2. Число корней полинома (1.1) ,, для бесконечной многоугольной области определяется выражениями

; ,  (2.2)

где - число полных квадрантов, проходимых годографом полинома при изменении вдоль границы области в верхней полуплоскости с обходом корней, лежащих на границе; 

  (2.3)

где - номер последней полуоси, пересекаемой годографом;

    , - коэффициенты, характеризующие наклон годографа при .

Применение теорем 2.1 и 2.2 даёт принципиальную возможность решения задачи определения распределения корней полинома относительно многоугольной области. Однако решение этой задачи путём непосредственного построения и анализа годографов со сложным характером изменения встречает ряд серьёзных трудностей. Во-первых, как и при построении частотных годографов, возникает не имеющая общего решения проблема выбора шага изменения независимой переменной и конечного значения . Во-вторых, по сравнению с частотными годографами вид годографа полинома при изменении вдоль границы многоугольной области усложняется с усложнением границы. В-третьих, приращение аргумента полинома при обходе корней, совпадающих с вершинами области, в отличие от частотных годографов, происходит не на целое число квадрантов. С целью устранения этих недостатков для анализа сложных годографов может быть использована алгебраическая интерпретация теорем 2.1 и 2.2.


  1.  Алгебраические соотношения, определяющие распределение корней.

Рассмотрим параметрическое представление каждого ребра многоугольной области:

                                                                                   (3.1)

где; - вещественная переменная;

 , если не является последним ребром бесконечной области; в противном случае.

Тогда при изменении вдоль го ребра для полинома (1.1) справедливо представление

                                                           (3.2)

Коэффициенты этого представления могут быть найдены с помощью рекуррентных соотношений

 (3.3)

Полином  (3.2) легко может быть приведён к виду

                                               (3.4)

где . Пусть для каждого го ребра многоугольной области получено представление полинома (1.1) в виде (3.4) и найдены множества вещественных корней из интервала и их кратностей полиномов вещественной и мнимой частей соотношения (3.2): . Тогда справедливы следующие леммы.

Лемма 3.1. Начальная точка годографа определяется соотношением

                              (3.5)

где есть соответствующий коэффициент полинома при .

Лемма 3.2. Конечная точка годографа для конечной многоугольной области определяется соотношением

где есть соответствующий коэффициент полинома при . В случае бесконечной области при годограф уходит в с предельным значением фазовой характеристики , определяемым через соответствующие коэффициенты и полинома при .

Лемма 2.2. Каждый элемент такой, что не существует элемента , определяет точку пересечения годографом вещественной оси. Каждый элемент такой, что не существует элемента , определяет точку пересечения годографом мнимой оси. Каждый элемент такой, что существуют элементы  и , определяет обход корня полинома, лежащего на границе области . Приращение аргумента полинома в последнем случае определяется соотношением

                            ,                                     (3.6)

где - приращение аргумента независимой переменной, определяемое соотношениями:

Применение лемм 3.1-3.3 позволяет установить начальную точку годографа полинома при изменении вдоль границы многоугольной области; оси координат, пересекаемые годографом при обходе границы области и при обходе корней полинома, лежащих на границе; асимптотическое поведение годографа при .

По начальной точке годографа, пересекаемым осям и характеристикам асимптотического поведения годографа может быть установлено полное приращение аргумента полинома, лежащих на границе и внутри области. Приращение аргумента полинома при обходе корней, лежащих на границе, может быть найдено с помощью леммы 3.2 и тем самым может быть установлено число корней полинома, лежащих на границе области. Таким образом, без построения годографа может быть решена задача определения распределения корней полинома относительно многоугольной области.

  1.  Заключение. Получены соотношения (2.1) и (2.2), позволяющие по виду годографа установить распределение корней полинома относительно многоугольной области. Полученные результаты могут использоваться при проектировании АС с применением корневых оценок качества переходных процессов. При сложном характере изменения годографа (обусловленного как видом самого полинома, так и видом многоугольной области) определение величин, входящих в соотношения (2.1) и (2.2), непосредственно по годографу представляет собой сложную вычислительную задачу. На основе соотношений (2.1) и (2.2) получены алгебраические выражения, позволяющие установить распределение корней относительно многоугольной области без построения годографа путём анализа вещественных неотрицательных корней специальным образом построенных полиномов.


 

А также другие работы, которые могут Вас заинтересовать

49752. СБОРОЧНО-СВАРОЧНЫЙ ЦЕХ ЗАВОДА ТЯЖЕЛОГО МАШИНОСТРОЕНИЯ 196 KB
  Коэффициент использования территории. Решение: Определяем нормированное значение коэффициента естественной освещенности по формуле 1: ; 1 где е значение к. о в при рассеянном свете от небосвода определяемое с учетом характера зрительной работы; е =4 т коэффициент светового климата без учета прямого солнечного света определяемый в зависимости от района расположения здания на территории России;m=11 С коэффициент солнечности климата с учетом прямого солнечного света определяемый в зависимости от района...
49754. ПРОЕКТИРОВАНИЕ ПРИВОДА 616 KB
  Коэффициент потерь одной зубчатой пары при тщательном выполнении и надлежащей смазке не превышает обычно 001. Коэффициент нагрузки: Cg= 1. sH limшестерня = 2 x 235 70 = 540 Мпа; sH limколесо = 2 x 262 70 = 594 Мпа; SH – коэффициент безопасности SH = 11; ZN – коэффициент долговечности учитывающий влияние ресурса. – продолжительность смены; kг=085 – коэффициент годового использования; kс=06 – коэффициент суточного использования.
49755. Электромеханический привод 817.65 KB
  Определяем по формуле где КПД быстроходной ступени цилиндрического редуктора; принимаем ; КПД тихоходной ступени цилиндрического редуктора; принимаем ; КПД конической передачи; принимаем ; КПД одной пары подшипников; принимаем ; k – число пар подшипников в механизме; k=3 Определяем выходную мощность привода Тогда потребная мощность двигателя Выбираем двигатель ДПМ25Н1 Н205 Общий вид электродвигателя его габаритные и присоединительные размеры представлены на рис. Определяем передаточное отношение цилиндрического редуктора ....
49756. Информационная система «Русский тюнинг автомобилей» 1.51 MB
  Исследовать предметную область; Разработать пользовательский интерфейс программы; Разработать основные алгоритмы программы; Определить внешние сущности и накопители данных; Построить информационную модель и ее описание; Реализовать интерфейс и основные алгоритмы программы.
49757. ЦИФРОВЫЕ СИСТЕМЫ ПЕРЕДАЧИ НЕПРЕРЫВНЫХ СООБЩЕНИЙ 374.56 KB
  Расчет ширины спектра сигнала модулированного двоичным кодом 10 1. Расчёт отношений мощностей сигнала и помехи необходимых для обеспечения заданного качества приёма 11 2.1 Формирование информационного сигнала 13 2.2 Формирование сигнала синхронизации 15 2.
49758. Выполнение проекта структурированной кабельной системы 344.5 KB
  Современный мир устроен так, что информационное взаимодействие, обмен информацией являются важнейшими компонентами, которые обеспечивают благополучие и развитие общества. Затраты на развитие и поддержание инфраструктуры такого взаимодействия весьма существенны и с целью снижения таких издержек пришли к пониманию необходимости комплексного решения задач информационного взаимодействия
49759. Разработка программы для имитационного моделирования системы массового обслуживания 815.12 KB
  Основные показатели: коэффициент использования системы средняя задержка в очереди среднее время ожидания среднее по времени число требований в очереди и в системе. Емкость накопителя требований r равна 14 дисциплина обслуживания – циклическая с квантом q = 10 секунд. В системе интервалы времени между поступлениями требований являются независимыми случайными величинами со средним временем = 60 секунд. Время обслуживания является случайной величиной некоррелированной с интервалами поступления требований.
49760. ПРОЕКТИРОВАНИЕ ПРИВОДА 591 KB
  Требуемая мощность кВт электродвигателя привода определяем по формуле: где Рв потребляемая мощность измельчителя Уточнение передаточных чисел привода Определяем общее передаточное отношение привода по формуле: Тогда Находим передаточное число редуктора: Тогда Принимаем Уточняем передаточное отношение открытой передачицепной: тогда SH – коэффициент запаса прочности принимаем в соответствии с рекомендациями с....