15806

Средняя ошибка выборки

Доклад

Экономическая теория и математическое моделирование

Средняя ошибка выборки Средняя ошибка выборки представляет из себя такое расхождение между средними выборочной и генеральной совокупностями которое не превышает б дельта. На основании теоремы Чебышева П. Л. величина средней ошибки при случайном повторном отборе...

Русский

2013-06-18

130.06 KB

8 чел.

Средняя ошибка выборки

Средняя ошибка выборки представляет из себя такое расхождение между средними выборочной и генеральной совокупностями, которое не превышает ±б (дельта).

На основании теоремы Чебышева П. Л. величина средней ошибки при случайном повторном отборе в контрольных работах по статистикерассчитывается по формуле (для среднего количественного признака):

где числитель — дисперсия признака х в выборочной совокупности;
n — численность выборочной совокупности.

Для альтернативного признака формула средней ошибки выборки для доли по теореме Я. Бернулли рассчитывается по формуле:

где р(1- р) — дисперсия доли признака в генеральной совокупности;
n — объем выборки.

Вследствие, того что дисперсия признака в генеральной совокупности точно не известна, на практике используют значение дисперсии, которое рассчитано для выборочной совокупности на основании закона больших чисел. Согласно данному закону выборочная совокупность при большом объеме выборки достаточно точно воспроизводит характеристики генеральной совокупности.

Поэтому расчетные формулы средней ошибки при случайном повторном отборе будут выглядеть таким образом:

1. Для среднего количественного признака:

где S^2 — дисперсия признака х в выборочной совокупности; 
n — объем выборки.

2. Для доли (альтернативного признака):

где w (1 - w) — дисперсия доли изучаемого признака в выборочной совокупности.

В теории вероятностей было показано, что генеральная дисперсия выражается через выборочную согласно формуле:

В случаях малой выборки, когда её объем меньше 30, необходимо учитывать коэффициент n/(n-1). Тогда среднюю ошибку малой выборки рассчитывают по формуле:

Так как в процессе бесповторной выборки сокращается численность единиц генеральной совокупности, то в представленных выше формулах расчета средних ошибок выборки нужно подкоренное выражение умножить на 1- (n/N).

Расчетные формулы для такого вида выборки будут выглядеть так:

1. Для средней количественного признака:

где N — объем генеральной совокупности; n — объем выборки.

2. Для доли (альтернативного признака):

где 1- (n/N) - доля единиц генеральной совокупности, не попавших в выборку.

Поскольку n всегда меньше N, то дополнительный множитель 1 - (n/N) всегда будет меньше единицы. Это означает, что средняя ошибка при бесповторном отборе всегда будет меньше, чем при повторном. Когда доля единиц генеральной совокупности, которые не попали в выборку, существенная, то величина 1 - (n/N) близка к единице и тогда расчет средней ошибки производится по общей формуле.

Средняя ошибка зависит от следующих факторов:

1. При выполнении принципа случайного отбора средняя ошибка выборки определяется во-первых объемом выборки: чем больше численность, тем меньше величины средней ошибки выборки. Генеральная совокупность характеризуется точнее тогда, когда больше единиц данной совокупности охватывает выборочное наблюдение

2. Средняя ошибка также зависит от степени варьирования признака. Степень варьирования характеризуется дисперсией. Чем меньше вариация признака (дисперсия), тем меньше средняя ошибка выборки. При нулевой дисперсии (признак не варьируется) средняя ошибка выборки равна нулю, таким образом, любая единица генеральной совокупности будет характеризовать всю совокупность по этому признаку.


 

А также другие работы, которые могут Вас заинтересовать

53545. Нашего стола царица или выходец из Южной Америки 95.5 KB
  Цель: расширить знания об одной из основных овощных культур, развивать художественные и творческие способности учащихся, учить анализу собранного материала, воспитывать уважение к людям труда.
53546. ИГРЫ НА УРОКЕ ИНОСТРАННОГО ЯЗЫКА 85.5 KB
  Можно проводить игры на аудирование текста, не имея ни картинок, ни рисунков, ни заранее приготовленных вопросов, ни пунктов текста и т.д., это игры на развитие аудитивной памяти. Учитель читает текст в нормальном темпе, играющие слушают
53547. Система показателей оценки имущественного положения организации 13.86 KB
  Основными характеристиками имущественного положения компании являются: сумма хозяйственных средств, доля внеоборотных активов в валюте баланса, доля активной части основных средств, коэффициент износа, коэффициент выбытия, коэффициент обновления.
53548. Квіти - це життя, надія, радість і натхнення 1.31 MB
  Мета: ознайомити учнів з фрагментами життєвого та творчого шляху видатної української художниці Катерини Білокур; розвивати вміння правильно сприймати і розуміти зміст картини; вчити вдало висловлюватися про побачене; розвивати вміння самостійно підбирати кольори і їх відтінки для вдалого відтворення краси квітки у малюнку; розвивати естетичні смаки; виховувати почуття глибокої поваги до творців прекрасного;...
53550. Використання елементів методів проектів та комп’ютерної підтримки на уроках фізики 646.5 KB
  Важливим аспектом застосування інтерактивних технологій є оновлення структури уроків. Кожен вчитель знає, що такі уроки краще запам’ятовуються учнями, викликають зацікавленість і бажання взяти участь в уроці. В нашій роботі ми пропонуємо використання різних форм роботи на уроках математики, фізики та інформатики.
53551. Все про каву 127.5 KB
  Мета: поглибити знання учнів про каву як рослину її біологічні особливості; ознайомитися з хімічним складом кавових зерен їх корисність та шкідливість вплив на організм; розглянути технологію обробки кавових зерен історію поширення кави по світу; ознайомитися з найбільшими країнамивиробниками кави традиції та звичаї які з нею повязані. Розглянути різноманітні рецепти приготування кави цікаві факти про цю рослину та використання кави не за призначенням. Оформлення: назви лабораторій вислови про каву: Говорять все прекрасне в житті...
53552. Показатели оценки рыночной активности 25 KB
  Этот раздел анализа выполняется участниками фондового рынка. Показатели рыночной привлекательности позволяют оценить ожидания рынка относительно доходности и риска ценных бумаг эмитента. Для проведения анализа рыночной привлекательности используется как данные бухгалтерской отчетности...