16219

РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа №7 Решение дифференциальных уравнений первого порядка Цель лабораторной работы: Изучить принципы создания класса для решения дифференциальных уравнений первого порядка. Постановка задачи: Разработать класс решения дифференциальных уравнен...

Русский

2013-06-20

80 KB

5 чел.

Лабораторная работа №7

Решение дифференциальных уравнений первого порядка

Цель лабораторной работы: Изучить принципы создания класса для решения дифференциальных уравнений первого порядка.

Постановка задачи:

Разработать класс решения дифференциальных уравнений первого порядка методом Эйлера, методом Рунге-Кутта четвертого порядка. Головная программа должна предоставлять возможность выбора метода решения и дифференциального уравнения и списка.

Краткие теоретические сведения:

Дифференциальным уравнением первого порядка называется уравнение вида F(x,y,у')=0 или у'=f(x,y). Функция y(x), при подстановке которой уравнение обращается в тождество, называется решением дифференциального уравнения.

Рассмотрим несколько численных методов решения дифференциальных уравнений первого порядка. Описание численных методов приводится для уравнения в виде у'=f(x,y).

  1.  Метод Эйлера.

Рассмотрим два варианта вывода расчетных формул

y1=y0+h*f(x0,y0)

x1=x0+h

Расчетные формулы для 1-го шага

yi+1=yi+h*f(xi,yi)

xi+1=xi*h

Расчетные формулы для i-го шага


  1.  Модифицированный метод Эйлера (вариант 2).

уi+1i+(h/2)[f(xi,yi)+f(xi,+h,yi+hf(xi,yi))],

xi+1=xi+h.

  1.  Метод Рунге-Кутта четвертого порядка.

уi+1=уi+(k1+2k2+2k3+k4)/6,

k1=hf(xi,yi),

k2=hf(xi+h/2, yi+k1/2),

k3=hf(xi+h/2, yi+k2/2),

k4=hf(xi+h, yi+k3),

xi+1=xi+h,

где уi+1i - значения искомой функции в точках xi+1, xi соответственно, индекс i показывает номер шага интегрирования, h - шаг интегрирования. Начальные условия при численном интегрировании учитываются на нулевом шаге: i=0, x=x0, y=y0.

Текст программы:

// основная программа

unit UMainForm;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, ExtCtrls, ComCtrls, TeeProcs, TeEngine, Chart, Series,

 Buttons, BubbleCh, Grids, DiffEquation;

type

 TForm1 = class(TForm)

   EditMin: TEdit;

   EditMax: TEdit;

   Label1: TLabel;

   Label2: TLabel;

   Label3: TLabel;

   Panel1: TPanel;

   Label4: TLabel;

   Bevel1: TBevel;

   DisplayChart: TChart;

   Series1: TLineSeries;

   SpeedButton1: TSpeedButton;

   Panel4: TPanel;

   RadioGroupEquation: TRadioGroup;

   Table: TStringGrid;

   Label5: TLabel;

   Panel2: TPanel;

   EditH: TEdit;

   Label6: TLabel;

   Panel3: TPanel;

   GroupBox1: TGroupBox;

   CheckBox1: TCheckBox;

   CheckBox2: TCheckBox;

   CheckBox3: TCheckBox;

   Series2: TLineSeries;

   Series3: TLineSeries;

   procedure SpeedButton1Click(Sender: TObject);

   procedure RadioGroupEquationClick(Sender: TObject);

   procedure GroupBox1Click(Sender: TObject);

   procedure CheckBoxesClick(Sender: TObject);

   procedure FormCreate(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form1: TForm1;

 Diff:TDifferentia;

implementation

{$R *.dfm}

procedure TForm1.SpeedButton1Click(Sender: TObject);

var

 Method:TMethod;

begin

if Assigned(Diff) then

 diff.Free;

if CheckBox1.Checked=true then Method[0]:=1 else Method[0]:=0;

if CheckBox2.Checked=true then Method[1]:=1 else Method[1]:=0;

if CheckBox3.Checked=true then Method[2]:=1 else Method[2]:=0;

case (RadioGroupEquation.ItemIndex) of

 0:Diff:=TDifferentia.Create(StrToFloat(EditMin.Text),StrToFloat(EditMax.Text),Method,StrToFloat(EditH.Text),DisplayChart,Table);

 1:Diff:=TDifferentia1.Create(StrToFloat(EditMin.Text),StrToFloat(EditMax.Text),Method,StrToFloat(EditH.Text),DisplayChart,Table);

 2:Diff:=TDifferentia2.Create(StrToFloat(EditMin.Text),StrToFloat(EditMax.Text),Method,StrToFloat(EditH.Text),DisplayChart,Table);

end;

end;

procedure TForm1.RadioGroupEquationClick(Sender: TObject);

begin

//  ShowMessage('Для вычисления значений нажмите кнопку "РАССЧИТАТЬ"');

end;

procedure TForm1.GroupBox1Click(Sender: TObject);

begin

 ShowMessage('Для вычисления значений нажмите кнопку "РАССЧИТАТЬ"');

end;

procedure TForm1.CheckBoxesClick(Sender: TObject);

begin

 Diff.Method[(Sender as TCheckBox).Tag]:=ord((Sender as TCheckBox).Checked);

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

 SpeedButton1.Click;

end;

end.

unit DiffEquation;

interface

Uses Chart, Grids, Classes, SysUtils;

Type

 TArrayList = array [0..2] of TList;

 TPoint = Record

     x:Extended;

     y:Extended;

   end;

 PPoint=^TPoint;

 TMethod=array [0..2] of byte;

 TDifferentia = class

   private

     FMin:Extended;  // мин. граница промежутка

     FMax:Extended;  // макс. граница промежутка

     FH:Extended;    // шаг вычисления

     FN:Integer;     // количество итераций

     FMethod:TMethod;    // метод вычисления

     FChart:TChart;  // область отображения

     FTable:TStringGrid;  // таблица для значений

     PD:PPoint;

     FResult:TArrayList;

     procedure DrawF(AResult:TList;series:Byte);

     procedure FillTable(AResult:TList; ARow:Byte);

{     procedure SetMin(newMin:Extended);

     procedure SetMax(newMax:Extended);

     procedure SetMethod(newMetod:Byte);}

   public

     constructor Create(AMin,AMax:Extended; AMethod:TMethod; AH:Extended; AChart:TChart; ATable:TStringGrid); overload;

     function F(x0,y0:Extended):Extended;  virtual;

     property Min:Extended read FMin write FMin;

     property Max:Extended read FMax write FMax;

//     property Method:Byte read FMethod write FMethod;

     property Chart:TChart read FChart write FChart;

     property Table:TStringGrid read FTable write FTable;

     procedure Calculate;

     procedure Calc_Ejler;

     procedure Calc_Modify_Ejler;

     procedure Calc_Runge_Kutta;

     function GetMethod(ind: integer): byte;

     procedure SetMethod(ind: integer;ANew: byte);

     procedure OutPut;

     property Method[ind: integer]: byte read GetMethod write SetMethod;

  end;

 TDifferentia1 = class (TDifferentia)

   public

     function F(x0,y0:Extended):Extended;     override;

 end;

 TDifferentia2 = class (TDifferentia)

   public

     function F(x0,y0:Extended):Extended;     override;

 end;

implementation

function TDifferentia.GetMethod(ind:  integer): byte;

begin

 Result:=FMethod[ind];

end;

procedure TDifferentia.SetMethod(ind: integer;ANew: byte);

begin

 FMethod[ind]:=ANew;

 Self.OutPut;

end;

function TDifferentia1.F(x0,y0:Extended):Extended;

begin

 Result:=(1-2*x0)/(y0*y0);

 Result:=FH*Result;

end;

function TDifferentia2.F(x0,y0:Extended):Extended;

begin

 Result:=sin(x0)-y0;

 Result:=FH*Result;

end;

constructor TDifferentia.Create(AMin,AMax:Extended; AMethod:TMethod; AH:Extended; AChart:TChart; ATable:TStringGrid);

begin

 FMin:=AMin;

 FMax:=AMax;

 FH:=AH;

 FN:=round((FMax-FMin)/FH)+1;

 FMethod:=AMethod;

 FChart:=AChart;

 FTable:=ATable;

 Calculate;

 OutPut;

end;

function TDifferentia.F(x0,y0:Extended):Extended;

begin

 Result:=3*x0-2*y0+5;

 Result:=FH*Result;

end;

procedure TDifferentia.Calculate;

begin

 Calc_Ejler;

 Calc_Modify_Ejler;

 Calc_Runge_Kutta;

end;

procedure TDifferentia.Calc_Ejler;

var

 i:Integer;

 x:Extended;

 y0,y:Extended; // y0 предыдущее значение

begin

 FResult[0]:=TList.Create;

 x:=FMin;

 y0:=1;

 for i:=1 to FN do

  begin

    new(PD);

    y:=y0+F(x-FH,y0);

    y0:=y;

    PD^.x:=x;

    PD^.y:=y;

    x:=x+FH;

    FResult[0].Add(PD);

  end;

end;

procedure TDifferentia.Calc_Modify_Ejler;

var

 i:integer;

 x:Extended;

 y0,y:Extended;

begin

 FResult[1]:=TList.Create;

 x:=FMin;

 y0:=1;

 for i:=1 to FN do

   begin

     new(PD);

     y:=y0+f((x+FH/2),(y0+f(x,y0)/2));

     y0:=y;

     PD^.x:=x;

     PD^.y:=y;

     x:=x+FH;

     FResult[1].Add(PD);

   end;

end;

procedure TDifferentia.Calc_Runge_Kutta;

var

  k1,k2,k3,k4:Extended;

  y0,y:Extended;

  x:Extended;

  i:integer;

begin

 FResult[2]:=TList.Create;

 x:=FMin;

 y0:=1;

 for i:=1 to FN do

   begin

     new(PD);

     k1:=f(x,y0);

     k2:=f(x+FH/2, y0+k1/2);

     k3:=f(x+FH/2, y0+k2/2);

     k4:=f(x+FH, y0+k3);

     y:=y0+(k1+2*k2+2*k3+k4)/6;

     y0:=y;

     PD^.x:=x;

     PD^.y:=y;

     x:=x+FH;

     FResult[2].Add(PD);

   end;

end;

procedure TDifferentia.DrawF(AResult:TList;series:Byte);

var

 i:integer;

begin

FChart.Series[series].Clear;

     for  i:=0 to AResult.Count-1 do

     begin

       new(PD);

       PD:=AResult[i];

       FChart.Series[series].AddXY(PD^.x, PD^.y);

     end;

end;

procedure TDifferentia.OutPut;

var

 i:integer;

 x:Extended;

begin

FTable.Rows[0].Clear;

FTable.Rows[1].Clear;

FTable.Rows[2].Clear;

FTable.Rows[3].Clear;

FChart.Series[0].Clear;

FChart.Series[1].Clear;

FChart.Series[2].Clear;

if ((FMethod[0]=1)or(FMethod[1]=1)or(FMethod[2]=1)) then

  if (Assigned(FChart))and(Assigned(FTable)) then

   begin

     FTable.Cells[0,0]:='   X ';

     FTable.ColCount:=2;

     x:=FMin;

     for i:=1 to FN do

          begin

            FTable.ColCount:=FTable.ColCount+1;

            FTable.Cells[i,0]:=FloatToStr(x);

            x:=x+FH;

          end;

     FTable.ColCount:=Table.ColCount-1;

     if FMethod[0]=1 then

         begin

           FTable.Cells[0,1]:='   Y1 ';

           DrawF(FResult[0],0);

           FillTable(FResult[0],1);

         end;

     if FMethod[1]=1 then

         begin

           FTable.Cells[0,2]:='   Y2 ';

           DrawF(FResult[1],1);

           FillTable(FResult[1],2);

         end;

     if FMethod[2]=1 then

          begin

           FTable.Cells[0,3]:='   Y3';

           DrawF(FResult[2],2);

           FillTable(FResult[2],3);

          end;

   end;

end;

procedure TDifferentia.FillTable(AResult:TList; ARow:Byte);

var

i:integer;

begin

for  i:=0 to AResult.Count-1 do      // y - столбцы

     begin

       new(PD);

       PD:=AResult.Items[i];

       FTable.Cells[i+1,ARow]:=FloatToStr(PD^.y);

       //Dispose(PD);

     end;

end;

end.


Результаты работы программы:

Вывод: В результате выполнения данной лабораторной работы были изучить принципы создания класса для решения дифференциальных уравнений первого порядка.

Был разработан класс, который позволяет вычислять дифференциальные уравнения первого порядка четырьмя различными методами:  Эйлера, усовершенствованный метод Эйлера и методом Рунге-Кутта четвертого порядка. Программа отображает результаты работы в виде графика и таблицы.


 

А также другие работы, которые могут Вас заинтересовать

48671. Кредитування підприємств в сучасних умовах розвитку економіки 138.5 KB
  Для регулювання діяльності комерційних банків Національний Банк України визначає для них такі економічні нормативи: мінімальний розмір статутного фонду; граничне співвідношення між розміром власних коштів банку і сумою його активів; показники ліквідності балансу. Визначається в процентному відношенні до загальної суми власних коштів банку. У разі систематичного недотримання комерційними банками цього законодавства Центральний банк може: ставити перед засновниками комерційного банку питання про здійснення заходів з фінансового...
48672. Игра Артиллерийская дуэль 195.5 KB
  Одинаковые кубики лежат в прямоугольной коробке. Каждый кубик окрашен в шесть цветов, по числу граней. Дно коробки разделено на квадраты. В каждом квадрате, кроме одного, лежит по кубику. За счет свободной ячейки кубики можно последовательно перекатывать из квадрата в квадрат. Вынимать и переворачивать кубики не разрешается.
48673. Модель регулятора уровня жидкости 99 KB
  Подводящая и отводящая труба объекты одного класса TTube. Верхний и нижний датчик объекты одного класса TSensor. Поэтому вводится понятие модели объект Relity класса TRelity. При этом отпадает необходимость в наличии класса TSignl.
48674. Определение стоимости поставок товара на склад 501 KB
  Структура проектируемой базы данных. Создание базы данных программными средствами. Создание базы данных Создание модуля данных
48676. Исследование прохождения сигналов через линейную электрическую цепь 417.5 KB
  Произвести нормирование параметров и переменных цепи. Составить уравнения состояния цепи. Определить переходную характеристику цепи для реакции используя: а аналитический; б численный расчет. Оценить время переходного процесса в цепи по 5 критерию от .
48678. Расчет концентраций и расходов исходной и очищенной газовой смеси и количество поглощаемого СО2 279 KB
  VG н м3 ч Степень поглощения ψ Размеры колец Рашига характеристический размер N мм Коэффициент избытка поглотителя r Отношение скорости газа к скорости захлёбывания n Абсорбтив Вещество Молекулярная масса M кг кмоль Степень поглощения ψ Молярный поток абсорбтива на входе газовой фазы n н кмоль с Молярный межфазный поток Δn кмоль с Молярный коэффициент распределения m кмоль кмоль Абсорбат Вещество G Молекулярная масса MG кг кмоль Молярная доля на входе низ колонны yn н мол. доля Относительная молярная доля на входе низ колонны Yn н...
48679. Основи теорії кіл. Методичні вказівки 1.31 MB
  Технічне завдання на проектування фільтру та графік виконання курсової роботи. За технічним завданням необхідно виконати синтез і аналіз двох типів фільтрів: фільтру нижніх частот або верхніх частот а також смугового або загороджувального фільтру. Смуга частот яка призначена для виділення частотних складових спектру сигналу називається смугою пропускання фільтру.1 Класифікація і частотні характеристики електричних фільтрів Частотновибіркові властивості фільтру прийнято характеризувати частотною залежністю його комплексного коефіцієнта...