16232

Определение скорости звука методом акустического резонанса

Лабораторная работа

Физика

Определение скорости звука методом акустического резонанса. Краткая теория. Звуковые волны представляют собой последовательные сжатия и разряжения среды т. е. упругие волны частоты которых лежат в пределах от 20 до20000 Гц. Появление звука всегда обусловлено колебания...

Русский

2013-06-20

104.5 KB

59 чел.

Определение скорости звука методом акустического резонанса.

Краткая теория.

Звуковые волны представляют собой  последовательные сжатия и разряжения среды, т. е. упругие волны, частоты которых лежат в пределах от 20 до20000 Гц. Появление звука всегда обусловлено колебаниями какого-либо тела. Распространение звука в газах осуществляется продольными волнами. Смещение частиц газа в плоской волне от положения равновесия x и времени t описывается уравнением  волны, имеющим вид (1). скорость  распространения звука  в  газе  задается выражением (2).Уравнение волны (1) относится к бегущей волне. Если в среде распространяется одновременно  несколько волн, то результирующий  волновой  процесс  есть суперпозиция этих волн. В работе рассматривается сложение звуковых волн в цилиндрической трубе длинной L, закрытой с одного конца (x=1) и открытой в атмосферу с другого (x=0).В результате отражения волны от обоих концов трубы возникают две бегущие волны, распространяющиеся навстречу друг другу и имеющие одинаковую частоту. Возникающий в трубе при сложении волн процесс называется стоячей волной (3).На концах трубы должны выполняться естественные физические условия, которые помогут определить константы в уравнении (3).На закрытом конце – это непроницаемость среды (4).На открытом конце  избыточное( над атмосферным ) давление равно нулю (5). После подстановки (3) в условие (5), уравнение стоячей волны в трубе приобретает вид (6). Возникающие в трубе стоячие волны имеют циклические частоты равные (7) ,эти частоты называются собственными частотами колебаний, а соответствующие им стоячие  волны (8) носят название собственных колебаний столба воздуха в трубе. На рисунке 1изображены формы полученных стоячих волн смещения с амплитудой(2аcos(п/v). На длине воздушного столба (длина трубы)  укладывается нечетное число четвертей длин волн. Есть точки, в которых амплитуда стоячей волны максимальна (9).Это пучности смещений частиц в стоячей волны –точки, где амплитуда равна нулю (10).

У закрытого  торца трубы  образуются узлы смещения ,скорости и пучность давления; у откры-

того конца - пучность смещения, скорости и узел давления. Колебания столба воздуха в трубе возбуждаются динамиком, расположенным у открытого конца. Если частота колебаний мембраны совпадает с одной из собственных частот (явление акустического резонанса), то в трубе устанавливаются стоячие звуковые волны. На этих частотах амплитуда колебаний столба воздуха в трубе будет максимальна. На рисунке  2  показан  прибор с  помощью  которого  производится  опыт. Прибор состоит из стеклянной трубки с боковым  отростком, ведущим к микрофону, и поршнем. Под трубкой помещена  шкала, по которой определяется положение поршня. Источником звука служит звуковой генератор. Микрофон предназначен для прео-

бразования акустических колебаний в электрические, которые регистрируются осциллографом.

                           

                 (x)

   

                   0                                  х          

                                                                              

                                                                 

                                                    L

                                                                          

(1)  ,где    ,

(2) 

(3) 

(4) 

(5) 

(6) 

(7)      n=0,1,2……….

(8) 

(9) 

(10) 

(11)      /2=L2L1

               

                Осциллограф                                                       Генератор

                  

                          Трубка                                         Поршень   

Собрать схему согласно рисунку №2.Перемещая поршень вдоль трубы, зафиксировать два следующих друг за другом положения L1 и L2, при которых амплитуда сигнала на экране осциллографа максимальна. Положение поршня для каждого максимума измерить 5 раз, при трёх различных частотах: 600Гц, 1000Гц, 1200Гц.        

                                

Частоты.

600Гц

1000Гц

1200Гц

L1,см

L2,см

L1,см

L2,см

L1,см

L2,см

10.1

36.5

2.5

19.6

3.3

17.8

10.7

37.7

2.5

19.3

3.5

17.9

10.2

36.8

2.4

19.3

3.6

18.0

10.7

36.8

2.6

19.4

3.5

17.7

10.0

36.8

2.4

19.3

3.2

17.6

L1

L2

L1

L2

L1

L2

10.34

36.92

2.48

19.38

3.42

17.8

1) Вычисление  погрешностей(результата измерений, средней квадратичной  и относительной).        

  ; S=; ΔL=;  ΔLcл=t ,n*S  ;;

 t ,n=2.8

ΔLcис = 2.5мм

a)При частоте 600 Гц.

L1: Sn=0.34см;S=0.15см; ΔLcл=4.2мм; ΔL=4.89мм;=0.047; L1=103.44.9(мм).

L2: Sn=0.45см;S=0.20см; ΔLcл=5.6мм; ΔL=6.13мм; =0.017; L2=369.26.13(мм).

b)При частоте 1000 Гц.

L1: Sn=0,08см;S=0.04см; ΔLcл=1.05мм; ΔL=2.71мм;=0.11; L1=24.82.7(мм).

L2: Sn=0.13см;S=0.06см; ΔLcл=1.63мм; ΔL=2.99мм;=0.015; L2=193.83.0(мм).

c)При частоте 1200 Гц.

L1: Sn=0.16см;S=0.07см; ΔLcл=2.06мм; ΔL=3.24мм;=0.09; L1=34.23.2(мм).

L2: Sn=0.16см;S=0,07см; ΔLcл=2.0мм; ΔL=3.20мм;=0.018; L2=178.02.0 (мм). 

2)Вычисление длины волны для каждой из частот по формуле (11): /2=L2L1 (11) и погрешности для длины волны.

  1.  При частоте 600 Гц : =0.532м

 

Δ=                           =0.0157м;

  1.  При частоте 1000 Гц : =0.338м

Δ=                           =0.0081м;

  1.  При частоте 1200 Гц : =0.288м

Δ=                           =0.0075м;

3)Определение практической скорости звука  для каждой из частот формуле (2):  и погрешности.

a) При частоте 600 Гц : V=319.2(м/с). ΔV=                                      =13.7(м/с)

b) При частоте 1000 Гц : V=338.0(м/с). ΔV=                                      =13.0(м/с)

c) При частоте 1200 Гц : V=345.6(м/с). ΔV=                                      =13.7(м/с)

4)Вычисление средней скорости звука и погрешности.

;

 <V>=334.3(м/с).

ΔV =                                             = 8.0(м/с)

5)Вычисление теоретической скорости звука .

 V=           ; =1.4; =29г/моль; Т=297К;

  

V=345(м/c).

Вывод: В этой лабораторной работе мы определяли скорость звука с помощью трубки со стержнем, осциллографа и генератора. Проведя опыты с разными частотами, мы вычислили значение скорости звука (теоретическую и практическую) и увидели, что они почти совпадают.

 


 

А также другие работы, которые могут Вас заинтересовать

51177. АСУ ТП технологического процесса «АСУ ТП технологического процесса теплообмена 78.31 KB
  Датчик давления Метран 55 предназначен для измерения давления жидкости в том числе агрессивных сред пара газа. Выпускают: а датчик для измерения избыточного давления Метран 55 ДИ Метран55ЕхДИ взрывозащищенное исполнение. Верхний предел измерений:01 МПа ÷ 100 МПа; б датчик для измерения давления разрежения Метран 55 ДВ Метран55ЕхДВ взрывозащищенное исполнение. Пределы измерений: 37 01 МПа ÷ 006 МПа; в датчик для измерения абсолютного давления Метран55ДА...
51180. Изучение последовательного порта UART 33.85 KB
  Цели работы Изучить схему подключения микроконтроллера к компьютеру. Изучить особенности работы последовательного асинхронного порта UART. Освоить методику расчета скорости последовательного порта. Изучить особенности программирования UART. Изучить способы отладки программ на учебном лабораторном стенде LESO1.
51182. Банкет за столом с частичным обслуживанием с официантами на 30 персон по случаю Дня Рождения 512.5 KB
  Ресторан - предприятие общественного питания с широким ассортиментом блюд сложного приготовления, включая заказные и фирменные, вино-водочные, табачные и кондитерские изделия, с повышенным уровнем обслуживания в сочетании с организацией досуга.
51183. Изучение таймеров микроконтроллера 39.03 KB
  Цели работы Изучить особенности работы таймеров микроконтроллера. Изучить методику конфигурирования таймеров. Научиться формировать с помощью таймера временные интервалы. Изучить способы отладки программ на учебном лабораторном стенде LESO1.