16241

Анализ переходных процессов

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа № 4 Анализ переходных процессов Цель: изучить правили построения диаграмм и с их использованием научиться анализировать переходные процессы на примере зарядки и разрядки конденсаторов. Ход работы: Загрузим схему последовательного ...

Русский

2013-06-20

143.11 KB

1 чел.

Лабораторная работа № 4

Анализ переходных процессов

Цель: изучить правили построения диаграмм и с их использованием научиться анализировать переходные процессы на примере зарядки и разрядки конденсаторов.

Ход работы:

  1.   Загрузим схему последовательного включения резистора и конденсатора RC_AC.sch. Установим параметры источника питания.

2 Установите параметры моделирования через команду Setup главного меню Analysis или путем нажатия кнопки на панели инструментов. Откроется окно Analysis Setup 

4 Запустим процесс моделирования, щелкнув по кнопке панели инструментов. После его завершения на экране автоматически откроется окно Probe (рисунок 4.5).

Рисунок 4.5

 в списке диаграмм (слева в окне Add Traces) добавим:  V(0) – потенциал точки «земли», V(V1+) – общее напряжение и V(C1:2) – напряжение на верхнем выводе конденсатора C1.

Для того чтобы диаграммы были более сглажены изменим ширину шага. Откроем окно предварительной установки для анализа переходных процессов Transient (Analysis | Setup) В поле Step Ceiling установите значение 4us (4 микросекунды) – при такой ширине шага программа PSpice вычислит 1000 значений в интервале от 0 до 4 мс;

Как видно из рисунка качество изображения диаграмм существенно улучшилось. Из диаграммы V(C1:2) видно, что начальная область соответствует переходному процессу (примерно 0,01 нс), далее схема переходит в стационарное состояние.  

5  Проанализируем процесс заряда и разряда конденсатора.

соберем схему RC цепи, используя в качестве источника напряжения  импульсный генератор VPULSE из библиотеки SOURCE

   установим следующие атрибуты:

DC = 0 (приложенное постоянное напряжение);

AC = 0 (приложенное постоянное напряжение);

V1 = 0 (напряжение в начале импульса);

V2 = 1V (амплитуда импульса);

TD = 0 (время задержки начала импульса);

TR = 1ns (время нарастания импульса, не должно быть равно нулю);

TF = 1ns (время затухания импульса, не должно быть равно нулю);

RW = 1.5ms (ширина импульса);

PER = 5ms (период повторения импульсов);

SIMULATIONONLY – не устанавливается;

PKGREF  V1 (название элемента в схеме);

выполните установку  параметров моделирования через команду Setup главного меню Analysis или путем нажатия кнопки на панели инструментов (рисунок 4.10);


6  Уменьшим в два раза сопротивление резистора R1 и запустите снова процесс моделирования.

При уменьшении сопротивления резистора R1 наблюдается более резкое нарастание заряда и более быстрый разряд конденсатора C1.

Вывод: изучили правила  построения диаграмм и с их использованием научились анализировать переходные процессы на примере зарядки и разрядки конденсаторов.


 

А также другие работы, которые могут Вас заинтересовать

12740. Создание и обработка растровой графики 89.03 KB
  Лабораторная работа Тема: Создание и обработка растровой графики Цель работы: Изучить основные возможности графического редактора Adobe Photoshop CS5 предназначенного для создания и обработки растровых изображений. Научиться пользоваться инструментами рисования и слоями д...
12741. Относительные, абсолютные и смешанные ссылки на ячейки в MS Office Excel 2007 63.16 KB
  Относительные абсолютные и смешанные ссылки на ячейки в MS Office Excel 2007 Ссылка – это адрес ячейки или диапазона ячеек. Ссылки бывают трех типов: относительные ссылки; например A1; абсолютные ссылки; например A1; смешанные ссылки; например A1 или A1. Относите
12742. Основы теории конечных полей 53 KB
  Лабораторная работа 2 Основы теории конечных полей Цель работы Закрепить знания полученные на лекциях курса €œОсновы криптографии с открытым ключом€œ по разделу €œОсновы теории конечных полей€. Используемое программное обеспечение Для работы используется пр
12743. Исследование идеальной системы шифрования 26.5 KB
  Лабораторная работа 1 Исследование идеальной системы шифрования Цель работы Изучить идеальный шифр основанный на побитном сложении по модулю 2 сообщения и чисто случайно сгенерированного ключа. Используемое программное обеспечение Для работы используетс
12744. Криптоанализ блочного шифра тотальным перебором ключей 281 KB
  Описание лабораторной работы Криптоанализ блочного шифра тотальным перебором ключей Цель работы Целью данной работы является изучение структуры и основных свойств блочного шифра основанного на подстановочно перестановочной сети SubstitutionPermutation Network или SPN кр
12745. Линейный криптоанализ блочного шифра 217 KB
  Лабораторная работа 4 Линейный криптоанализ блочного шифра Цель работы Целью данной работы является изучение принципа линейного криптоанализа блочных шифров реализованных по схеме SPN. Задание 1. Произвести оценку линейности Sbox учебного шифра постр...
12746. Дифференциальный криптоанализ блочного шифра 203 KB
  Описание лабораторной работы Дифференциальный криптоанализ блочного шифра Цель работы Целью данной работы является изучение принципа дифференциального криптоанализа блочных шифров реализованных по схеме SPN. Задание 1. Произвести вычисления разностны...
12747. Представления и свойства булевых функций 25.5 KB
  Лабораторная работа 5 Представления и свойства булевых функций Цель работы Изучить формы представления булевых функций и способы нахождения их криптографических свойств. Используемое программное обеспечение Для работы используется программа pANF pPUA За...
12748. Изучение и исследование блокового шифра AES (Rijndael) 32.5 KB
  Лабораторная работа 5 Изучение и исследование блокового шифра AES Rijndael Цель работы Изучить преобразования выполняемые при шифровании и дешифровании сообщений в блоковом шифре AES а также исследовать некоторые его свойства . Используемое программное обеспечен...