16308

Фрактальный папоротник и аффинные преобразования

Домашняя работа

Информатика, кибернетика и программирование

Фрактальный папоротник и аффинные преобразования Около четырехсот миллионов лет назад из теплого девонского моря населенного диковинными рыбами на еще безжизненную сушу начали наползать первые растения. Позднее на первобытной Земле многие миллионы лет шумели ка

Русский

2013-06-20

43.5 KB

2 чел.

Фрактальный папоротник и аффинные преобразования

Около четырехсот миллионов лет назад из теплого девонского моря, населенного диковинными рыбами, на еще безжизненную сушу начали наползать первые растения. Позднее на первобытной Земле многие миллионы лет шумели карбонские леса, состоящие преимущественно из гигантских древовидных папоротников. Живописные видения того далекого времени в стиле палео-арт можно отыскать в закоулках интернета. Благодаря своему невероятно древнему происхождению папоротники представляют собой живую иллюстрацию самых фундаментальных природных формообразовательных алгоритмов. Вместе с тем это и классический пример фрактальной геометрической структуры. В одной из моих прошлых статей я рассказывал об L-формализме, который позволяет строить подобные фигуры. Однако, используя рекурсивные замены, мы всегда строим лишь предфрактал какого-либо заданного порядка. Для построения отпечатка истинного фрактала используется другой подход, называемый методом итерируемых функций или IFS-методом (аббревиатура IFS происходит от английских слов iterated function system). IFS-метод основан на аффинных (от лат. affinis - родственный) преобразованиях координат точек по формулам:

X=ax+by+e

Y=cx+dy+f,

где a, b, c, d, e, f - заданные коэффициенты, x и y - текущие координаты, а X и Y - вновь вычисленные значения координат. В начале процесса задается исходная позиция. Каждая последующая точка рассчитывается на основе предыдущей по указанным выше формулам. Для построения изображения листа папоротника одновременно используются четыре различных набора коэффициентов, каждый из которых выбирается на очередном шаге с определенной вероятностью при помощи генератора случайных чисел. Описанный алгоритм можно реализовать в виде циклически повторяющейся конструкции Case.

Private Sub Form_Click()

Randomize Timer

x = 0

y = 0

For i = 1 To 70000

 r = Rnd

 Select Case r

  Case 0 To 0.01

   a = 0: b = 0: c = 0: d = 0.16: e = 0: f = 0

  Case 0.01 To 0.8

   a = 0.85: b = 0.04: c = -0.04: d = 0.85: e = 0: f = 1.6

  Case 0.8 To 0.9

   a = 0.2: b = -0.26: c = 0.23: d = 0.22: e = 0: f = 1.6

  Case 0.9 To 1

   a = -0.15: b = 0.28: c = 0.26: d = 0.24: e = 0: f = 0.44

 End Select

 X1 = (a * x) + (b * y) + e

 Y1 = (c * x) + (d * y) + f

 x = X1

 y = Y1

 PSet (x + 10, 11 - y), RGB(0, 100, 0)

 Next i

End Sub

Метод IFS представляет собой хорошую иллюстрацию принципа системности. Изменение одного из коэффициентов влияет, так или иначе, на всю структуру в целом. В этом смысле влияние коэффициентов в аффинных преобразованиях на форму итогового листа можно сравнить с влиянием генов на фенотипические структуры организма. Все влияет на все. Например, если приравнять к нулю коэффициент d в первом преобразовании, то во всей итоговой структуре исчезнут стебельки. Если начать изменять симметричные значения коэффициентов b и c во втором преобразовании, то все элементы структуры листа в ответ будут скручиваться либо распрямляться (в зависимости от того, будем ли мы увеличивать или уменьшать их абсолютные величины).

При помощи метода IFS можно, разумеется, строить не только изображение листа папоротника, но и другие фрактальные структуры, такие, например, как треугольник Серпинского или снежинка фон Кох. Нужно лишь подобрать соответствующие коэффициенты. Например, треугольник Серпинского появится на экране в результате реализации следующего программного кода:

Private Sub Form_Click()

x = 0

y = 0

For i = 1 To 40000

 r = Rnd

 Select Case r

  Case Is < (1 / 3)

   x = 0.5 * x

   y = 0.5 * y

  Case (1 / 3) To (2 / 3)

   x = 0.5 * x

   y = 0.5 * y + 3000

  Case Is > (2 / 3)

   x = 0.5 * x + 1500

   y = 0.5 * y + 1500

 End Select

 PSet (y + 1000, 5000 - x), RGB(0, 0, 0)

 Next i

End Sub

При использовании формул IFS мы получаем отпечаток истинного фрактала, ограниченного лишь разрешающей способностью устройства отображения. В приведенных выше программных фрагментах используется генератор случайных чисел. Каждый из возможных наборов коэффициентов выбирается случайно с какой-то заданной вероятностью. При этом создается впечатление, что точки одна за другой налипают на висящий в пространстве призрачный фрактальный аттрактор, постепенно делая его видимым. Возможно использование и детерминированных алгоритмов построения фрактальных объектов методом IFS. Заинтересованный читатель найдет исчерпывающую информацию на этот счет в добротном учебнике: Р.М. Кроновер "Фракталы и хаос в динамических системах. Основы теории". Москва: Постмаркет, 2000. - 352 с. Появление учебников по фрактальной геометрии - знаковое событие. Недалеко то время, когда основы фрактальной геометрии войдут обязательной составной частью даже в школьную программу. Это не просто новый модный раздел геометрии. Фрактальная геометрия знаменует собой качественно новый этап ее развития.

В заключении процитирую мысль одного неизвестного сетевого автора, подписавшегося как Hard Wisdom. Сам он отнесся к своей идее как к малозначительному курьезу или приколу, но мне думается, что это нечто большее. Hard Wisdom между прочим высказал сколь элементарную, столь и глубокую мысль о том, что числа - это также не что иное, как фракталы. Он пишет: "Давайте взглянем на обычные целые числа, записанные в позиционной системе счисления. Очевидно, что любая часть такого числа - тоже число! Доказательство данного факта вряд ли необходимо.;-) Давайте отобразим графически число, взятое в двоичной системе счисления (исключительно ради наглядности, для произвольной системы счисления надо лишь использовать большее количество цветов, чем 2 :-). Цифру 1 будем изображать закрашенной точкой, а цифру 0 - пробелом. Итак:

На шкале N отложены числа, на шкале R - цифры в позиции числа. Мы можем заметить интересную симметрию (связанную с основанием системы счисления, в частности, причем симметрию рекурсивную)"


 

А также другие работы, которые могут Вас заинтересовать

18591. Пример реализации компонентно-ориентированной технологии в САПР 36 KB
  Пример реализации компонентноориентированной технологии в САПР Основные идеи компонентноориентированной объектной технологии с созданием расширенных специализированных библиотек компонентов реализованы в системе CAS.CADE Computer Aided Software / Computer Aided Design Engineering фирмы Ma...
18592. Системные среды автоматизированных систем. Назначение системных сред автоматизированных систем 30.5 KB
  Системные среды автоматизированных систем Назначение системных сред автоматизированных систем Системы автоматизированного проектирования относятся к числу наиболее сложных и наукоемких АС. Наряду с выполнением собственно проектных процедур необходимо автоматизи...
18593. Системы управления базами данных 37.5 KB
  Системы управления базами данных В большинстве автоматизированных информационных систем применяют СУБД поддерживающие реляционные модели данных. Среди общих требований к СУБД можно отметить: 1 обеспечение целостности данных их полноты и достоверности; 2 защита дан
18594. Распределенные базы данных 35 KB
  Распределенные базы данных В крупных АС построенных на основе корпоративных сетей не всегда удается организовать централизованное размещение всех баз данных и СУБД на одном узле сети. Поэтому появляются распределенные базы данных РБД. При построении РБД приходитс
18595. Системные среды автоматизированных систем 30 KB
  Системные среды автоматизированных систем Применяют два способа тиражирования. Способ называемый репликацией первой копии основан на выделении среди серверов с копиями базы данных одного первичного сервера репликатора. Внесение изменений пользователями возможно
18596. Интеллектуальные средства поддержки принятия решений 26.5 KB
  Интеллектуальные средства поддержки принятия решений В общем случае полная формализация управления проектированием не может быть достигнута поэтому полезную роль играют системы DSS Decision Support Systems поддержки решений принимаемых людьми. В качестве таких систем часто и
18597. Функции систем PDM 58.5 KB
  Функции систем PDM Системы PDM предназначены для управления проектированием и его информационного обеспечения. Это осуществляется путем упорядочения информации о проекте и управления соответствующими документами включая спецификации и другие виды представления данны
18598. Структура технического обеспечения 40.5 KB
  Структура технического обеспечения Требования предъявляемые к техническому обеспечению Техническое обеспечение САПР включает в себя различные технические средства hardware используемые для выполнения автоматизированного проектирования а именно ЭВМ периферийные
18599. Эталонная модель взаимосвязи открытых систем 34.5 KB
  Эталонная модель взаимосвязи открытых систем Для удобства модернизации сложных информационных систем их делают максимально открытыми т. е. приспособленными для внесения изменений в некоторую часть системы при сохранении неизменными остальных частей. В отношении выч