16308

Фрактальный папоротник и аффинные преобразования

Домашняя работа

Информатика, кибернетика и программирование

Фрактальный папоротник и аффинные преобразования Около четырехсот миллионов лет назад из теплого девонского моря населенного диковинными рыбами на еще безжизненную сушу начали наползать первые растения. Позднее на первобытной Земле многие миллионы лет шумели ка

Русский

2013-06-20

43.5 KB

2 чел.

Фрактальный папоротник и аффинные преобразования

Около четырехсот миллионов лет назад из теплого девонского моря, населенного диковинными рыбами, на еще безжизненную сушу начали наползать первые растения. Позднее на первобытной Земле многие миллионы лет шумели карбонские леса, состоящие преимущественно из гигантских древовидных папоротников. Живописные видения того далекого времени в стиле палео-арт можно отыскать в закоулках интернета. Благодаря своему невероятно древнему происхождению папоротники представляют собой живую иллюстрацию самых фундаментальных природных формообразовательных алгоритмов. Вместе с тем это и классический пример фрактальной геометрической структуры. В одной из моих прошлых статей я рассказывал об L-формализме, который позволяет строить подобные фигуры. Однако, используя рекурсивные замены, мы всегда строим лишь предфрактал какого-либо заданного порядка. Для построения отпечатка истинного фрактала используется другой подход, называемый методом итерируемых функций или IFS-методом (аббревиатура IFS происходит от английских слов iterated function system). IFS-метод основан на аффинных (от лат. affinis - родственный) преобразованиях координат точек по формулам:

X=ax+by+e

Y=cx+dy+f,

где a, b, c, d, e, f - заданные коэффициенты, x и y - текущие координаты, а X и Y - вновь вычисленные значения координат. В начале процесса задается исходная позиция. Каждая последующая точка рассчитывается на основе предыдущей по указанным выше формулам. Для построения изображения листа папоротника одновременно используются четыре различных набора коэффициентов, каждый из которых выбирается на очередном шаге с определенной вероятностью при помощи генератора случайных чисел. Описанный алгоритм можно реализовать в виде циклически повторяющейся конструкции Case.

Private Sub Form_Click()

Randomize Timer

x = 0

y = 0

For i = 1 To 70000

 r = Rnd

 Select Case r

  Case 0 To 0.01

   a = 0: b = 0: c = 0: d = 0.16: e = 0: f = 0

  Case 0.01 To 0.8

   a = 0.85: b = 0.04: c = -0.04: d = 0.85: e = 0: f = 1.6

  Case 0.8 To 0.9

   a = 0.2: b = -0.26: c = 0.23: d = 0.22: e = 0: f = 1.6

  Case 0.9 To 1

   a = -0.15: b = 0.28: c = 0.26: d = 0.24: e = 0: f = 0.44

 End Select

 X1 = (a * x) + (b * y) + e

 Y1 = (c * x) + (d * y) + f

 x = X1

 y = Y1

 PSet (x + 10, 11 - y), RGB(0, 100, 0)

 Next i

End Sub

Метод IFS представляет собой хорошую иллюстрацию принципа системности. Изменение одного из коэффициентов влияет, так или иначе, на всю структуру в целом. В этом смысле влияние коэффициентов в аффинных преобразованиях на форму итогового листа можно сравнить с влиянием генов на фенотипические структуры организма. Все влияет на все. Например, если приравнять к нулю коэффициент d в первом преобразовании, то во всей итоговой структуре исчезнут стебельки. Если начать изменять симметричные значения коэффициентов b и c во втором преобразовании, то все элементы структуры листа в ответ будут скручиваться либо распрямляться (в зависимости от того, будем ли мы увеличивать или уменьшать их абсолютные величины).

При помощи метода IFS можно, разумеется, строить не только изображение листа папоротника, но и другие фрактальные структуры, такие, например, как треугольник Серпинского или снежинка фон Кох. Нужно лишь подобрать соответствующие коэффициенты. Например, треугольник Серпинского появится на экране в результате реализации следующего программного кода:

Private Sub Form_Click()

x = 0

y = 0

For i = 1 To 40000

 r = Rnd

 Select Case r

  Case Is < (1 / 3)

   x = 0.5 * x

   y = 0.5 * y

  Case (1 / 3) To (2 / 3)

   x = 0.5 * x

   y = 0.5 * y + 3000

  Case Is > (2 / 3)

   x = 0.5 * x + 1500

   y = 0.5 * y + 1500

 End Select

 PSet (y + 1000, 5000 - x), RGB(0, 0, 0)

 Next i

End Sub

При использовании формул IFS мы получаем отпечаток истинного фрактала, ограниченного лишь разрешающей способностью устройства отображения. В приведенных выше программных фрагментах используется генератор случайных чисел. Каждый из возможных наборов коэффициентов выбирается случайно с какой-то заданной вероятностью. При этом создается впечатление, что точки одна за другой налипают на висящий в пространстве призрачный фрактальный аттрактор, постепенно делая его видимым. Возможно использование и детерминированных алгоритмов построения фрактальных объектов методом IFS. Заинтересованный читатель найдет исчерпывающую информацию на этот счет в добротном учебнике: Р.М. Кроновер "Фракталы и хаос в динамических системах. Основы теории". Москва: Постмаркет, 2000. - 352 с. Появление учебников по фрактальной геометрии - знаковое событие. Недалеко то время, когда основы фрактальной геометрии войдут обязательной составной частью даже в школьную программу. Это не просто новый модный раздел геометрии. Фрактальная геометрия знаменует собой качественно новый этап ее развития.

В заключении процитирую мысль одного неизвестного сетевого автора, подписавшегося как Hard Wisdom. Сам он отнесся к своей идее как к малозначительному курьезу или приколу, но мне думается, что это нечто большее. Hard Wisdom между прочим высказал сколь элементарную, столь и глубокую мысль о том, что числа - это также не что иное, как фракталы. Он пишет: "Давайте взглянем на обычные целые числа, записанные в позиционной системе счисления. Очевидно, что любая часть такого числа - тоже число! Доказательство данного факта вряд ли необходимо.;-) Давайте отобразим графически число, взятое в двоичной системе счисления (исключительно ради наглядности, для произвольной системы счисления надо лишь использовать большее количество цветов, чем 2 :-). Цифру 1 будем изображать закрашенной точкой, а цифру 0 - пробелом. Итак:

На шкале N отложены числа, на шкале R - цифры в позиции числа. Мы можем заметить интересную симметрию (связанную с основанием системы счисления, в частности, причем симметрию рекурсивную)"


 

А также другие работы, которые могут Вас заинтересовать

73167. Клиентское приложение Базы данных 20.5 KB
  Реализуйте клиентскую программу которая обладает следующими возможностями: Запуск клиента с заданными параметрами Обработка ошибок Запросы на чтение Запросы на добавление данных Запросы на модификацию данных Примечания: технологию создания клиентских приложения для mysql на C можно...
73169. ЛЕБІДКА 3.57 MB
  Навчальні завдання: вивчення конструкції лебідки; визначення основних робочих параметрів - канатоємності барабана, швидкості навивання каната на барабан, зусилля в канаті; вимірювання зусилля в канаті під час пуску двигуна (за допомогою тензоапаратури, аналого-цифрового перетворювача...
73170. ВИВЧЕННЯ ТАЛІВ 2.13 MB
  Визначення зусиль у тяговому ланцюгу ручного таля і ККД механізму під час підіймання вантажу; визначення коефіцієнта опору пересуванню електроталя; визначення сили зчеплення привідних коліс електроталя з монорейкою і розрахунок максимально припустимого прискорення під час розгону таля...
73171. СТІЙКІСТЬ СТРІЛОВОГО КРАНА 610 KB
  Самохідний стріловий кран на пневмоколісному ході (рис.7.1) із баштово-стріловим обладнанням. Ходова частина 1 містить чотири привідних колеса з індивідуальними механізмами пересування. У кутах неповоротної рами розташовані виносні опори 2, які збільшують опорну базу крана...
73172. СТРІЧКОВИЙ КОНВЕЄР 372 KB
  Модель містить жолобчасті трьохроликові роликоопори 1 завантаженої верхньої гілки та однороликові плоскі роликоопори 2 порожньої гілки, які служать для підтримування стрічки 3. Жолобчасті роликоопори порівняно з плоскими забезпечують подвоєння продуктивності з тими...
73173. Настройка параметров аутентификации Windows 8,1 902.04 KB
  Определяет число новых паролей которые должны быть сопоставлены учетной записи пользователя прежде чем можно будет снова использовать старый пароль. Определяет период времени в днях в течение которого можно использовать пароль прежде чем система потребует от пользователя заменить его.
73174. Электронная почта 21.65 KB
  Цель работы: изучить основные функции работы с программами-почтовыми клиентами на примере приложения Outlook Express. Порядок выполнения работы Вызвать программу Outlook Express; Произвести настройку учетной записи (Сервис Учетные записи электронной почты).
73175. Вычисления в MS Excel 88.82 KB
  На Листе1 составьте таблицы (с пояснительными надписями!) для решения следующих задач: По известным длинам катетов прямоугольного треугольника вычислить длину гипотенузы и площадь треугольника. Дано уравнение: Вычислить значения у для с шагом 2.