16308

Фрактальный папоротник и аффинные преобразования

Домашняя работа

Информатика, кибернетика и программирование

Фрактальный папоротник и аффинные преобразования Около четырехсот миллионов лет назад из теплого девонского моря населенного диковинными рыбами на еще безжизненную сушу начали наползать первые растения. Позднее на первобытной Земле многие миллионы лет шумели ка

Русский

2013-06-20

43.5 KB

4 чел.

Фрактальный папоротник и аффинные преобразования

Около четырехсот миллионов лет назад из теплого девонского моря, населенного диковинными рыбами, на еще безжизненную сушу начали наползать первые растения. Позднее на первобытной Земле многие миллионы лет шумели карбонские леса, состоящие преимущественно из гигантских древовидных папоротников. Живописные видения того далекого времени в стиле палео-арт можно отыскать в закоулках интернета. Благодаря своему невероятно древнему происхождению папоротники представляют собой живую иллюстрацию самых фундаментальных природных формообразовательных алгоритмов. Вместе с тем это и классический пример фрактальной геометрической структуры. В одной из моих прошлых статей я рассказывал об L-формализме, который позволяет строить подобные фигуры. Однако, используя рекурсивные замены, мы всегда строим лишь предфрактал какого-либо заданного порядка. Для построения отпечатка истинного фрактала используется другой подход, называемый методом итерируемых функций или IFS-методом (аббревиатура IFS происходит от английских слов iterated function system). IFS-метод основан на аффинных (от лат. affinis - родственный) преобразованиях координат точек по формулам:

X=ax+by+e

Y=cx+dy+f,

где a, b, c, d, e, f - заданные коэффициенты, x и y - текущие координаты, а X и Y - вновь вычисленные значения координат. В начале процесса задается исходная позиция. Каждая последующая точка рассчитывается на основе предыдущей по указанным выше формулам. Для построения изображения листа папоротника одновременно используются четыре различных набора коэффициентов, каждый из которых выбирается на очередном шаге с определенной вероятностью при помощи генератора случайных чисел. Описанный алгоритм можно реализовать в виде циклически повторяющейся конструкции Case.

Private Sub Form_Click()

Randomize Timer

x = 0

y = 0

For i = 1 To 70000

 r = Rnd

 Select Case r

  Case 0 To 0.01

   a = 0: b = 0: c = 0: d = 0.16: e = 0: f = 0

  Case 0.01 To 0.8

   a = 0.85: b = 0.04: c = -0.04: d = 0.85: e = 0: f = 1.6

  Case 0.8 To 0.9

   a = 0.2: b = -0.26: c = 0.23: d = 0.22: e = 0: f = 1.6

  Case 0.9 To 1

   a = -0.15: b = 0.28: c = 0.26: d = 0.24: e = 0: f = 0.44

 End Select

 X1 = (a * x) + (b * y) + e

 Y1 = (c * x) + (d * y) + f

 x = X1

 y = Y1

 PSet (x + 10, 11 - y), RGB(0, 100, 0)

 Next i

End Sub

Метод IFS представляет собой хорошую иллюстрацию принципа системности. Изменение одного из коэффициентов влияет, так или иначе, на всю структуру в целом. В этом смысле влияние коэффициентов в аффинных преобразованиях на форму итогового листа можно сравнить с влиянием генов на фенотипические структуры организма. Все влияет на все. Например, если приравнять к нулю коэффициент d в первом преобразовании, то во всей итоговой структуре исчезнут стебельки. Если начать изменять симметричные значения коэффициентов b и c во втором преобразовании, то все элементы структуры листа в ответ будут скручиваться либо распрямляться (в зависимости от того, будем ли мы увеличивать или уменьшать их абсолютные величины).

При помощи метода IFS можно, разумеется, строить не только изображение листа папоротника, но и другие фрактальные структуры, такие, например, как треугольник Серпинского или снежинка фон Кох. Нужно лишь подобрать соответствующие коэффициенты. Например, треугольник Серпинского появится на экране в результате реализации следующего программного кода:

Private Sub Form_Click()

x = 0

y = 0

For i = 1 To 40000

 r = Rnd

 Select Case r

  Case Is < (1 / 3)

   x = 0.5 * x

   y = 0.5 * y

  Case (1 / 3) To (2 / 3)

   x = 0.5 * x

   y = 0.5 * y + 3000

  Case Is > (2 / 3)

   x = 0.5 * x + 1500

   y = 0.5 * y + 1500

 End Select

 PSet (y + 1000, 5000 - x), RGB(0, 0, 0)

 Next i

End Sub

При использовании формул IFS мы получаем отпечаток истинного фрактала, ограниченного лишь разрешающей способностью устройства отображения. В приведенных выше программных фрагментах используется генератор случайных чисел. Каждый из возможных наборов коэффициентов выбирается случайно с какой-то заданной вероятностью. При этом создается впечатление, что точки одна за другой налипают на висящий в пространстве призрачный фрактальный аттрактор, постепенно делая его видимым. Возможно использование и детерминированных алгоритмов построения фрактальных объектов методом IFS. Заинтересованный читатель найдет исчерпывающую информацию на этот счет в добротном учебнике: Р.М. Кроновер "Фракталы и хаос в динамических системах. Основы теории". Москва: Постмаркет, 2000. - 352 с. Появление учебников по фрактальной геометрии - знаковое событие. Недалеко то время, когда основы фрактальной геометрии войдут обязательной составной частью даже в школьную программу. Это не просто новый модный раздел геометрии. Фрактальная геометрия знаменует собой качественно новый этап ее развития.

В заключении процитирую мысль одного неизвестного сетевого автора, подписавшегося как Hard Wisdom. Сам он отнесся к своей идее как к малозначительному курьезу или приколу, но мне думается, что это нечто большее. Hard Wisdom между прочим высказал сколь элементарную, столь и глубокую мысль о том, что числа - это также не что иное, как фракталы. Он пишет: "Давайте взглянем на обычные целые числа, записанные в позиционной системе счисления. Очевидно, что любая часть такого числа - тоже число! Доказательство данного факта вряд ли необходимо.;-) Давайте отобразим графически число, взятое в двоичной системе счисления (исключительно ради наглядности, для произвольной системы счисления надо лишь использовать большее количество цветов, чем 2 :-). Цифру 1 будем изображать закрашенной точкой, а цифру 0 - пробелом. Итак:

На шкале N отложены числа, на шкале R - цифры в позиции числа. Мы можем заметить интересную симметрию (связанную с основанием системы счисления, в частности, причем симметрию рекурсивную)"


 

А также другие работы, которые могут Вас заинтересовать

22408. Производные высших порядков. Формулы Тейлора. Применение производной. Производные и дифференциалы высших порядков 652 KB
  Линеаризация функции. Приближенное вычисление значений функции. Исследование функции с помощью производной. Возрастание и убывание функции на промежутке.
22409. Первообразная и неопределенный интеграл 454 KB
  Корни многочлена. Кратность корней многочлена. Разложение многочлена с действительными коэффициентами на множители. Если a0  0 то число n называется степенью многочлена fx.
22410. Определенный интеграл 635.5 KB
  Определенный интеграл План Определенный интеграл Определение определенного интеграла. Геометрический смысл и физический смысл определенного интеграла. Условия существования определенного интеграла. Свойства определенного интеграла.
22411. Дифференциальное исчисление функций нескольких переменных 860.5 KB
  Дифференциальное исчисление функций нескольких переменных План Функции нескольких переменных Пространство Rn. Функции нескольких переменных. Предел функции нескольких переменных. Непрерывность функции и их свойства.
22412. Кратные интегралы 1.14 MB
  Пусть функция z = fx y = fP задана dв замкнутой области D плоскости Oxy. Разобьем область D на n элементарных областей Di i = 1 2n площади которых обозначим через Si а диаметры наибольшие расстояния между точками области Di через di. Совокупность частичных областей Di назовем разбиением T области D. В каждой области Di разбиения T выберем точку Pixi yi для i = 1 2n.
22413. Множества. Числовые множества 256 KB
  Множества. Числовые множества План 1. Множества. Подмножества.
22414. Отображения. Числовые функции 326.5 KB
  Отображением f множества X в множество Y называется всякое правило которое любому элементу xX ставит единственный элемент y обозначаемый fx. Бинарным отношением f между множествами X и Y называется любое подмножество множества XY. Бинарное отношение f между множествами X и Y называется отображением множества X в множество Y если для любого элемента xX существует один и только один элемент yY такой что x yf . Отображение f множества X в Y называется также функцией определенной на множестве X со значениями в множестве Y.
22415. Числовая последовательность и ее предел 211.5 KB
  Числовая последовательность и ее предел Числовая последовательность и свойства последовательностей. Числовая последовательность и свойства последовательностей. Числовой последовательность или просто последовательность называется функция f определенная на множестве натуральных чисел N значения которой числа действительные или комплексные. Последовательность обозначаем через ее значения : x1 x2 x3 xn или кратко {xn}.
22416. Предел функции 329.5 KB
  Предел функции Предел функции в точке по Коши и по Гейне. Предел функции на бесконечности. Бесконечно малые и бесконечно большие функции и их свойства. Свойства предела функции.