16310

АНАЛИЗ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ КОНСОЛЬНОЙ БАЛКИ

Лабораторная работа

Производство и промышленные технологии

Лабораторная работа АНАЛИЗ НАПРЯЖЕННОДЕФОРМИРОВАННОГО СОСТОЯНИЯ КОНСОЛЬНОЙ БАЛКИ Цель работы: Приобретение практических навыков по измерению прогибов и деформаций балок. Содержание работы: Балкой называют стержень нагруженный силами действующими в напра...

Русский

2013-06-20

2.26 MB

23 чел.

Лабораторная работа

АНАЛИЗ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ КОНСОЛЬНОЙ БАЛКИ

Цель работы:

Приобретение практических навыков по измерению прогибов и деформаций балок.

Содержание работы:

Балкой называют стержень, нагруженный силами, действующими в направлении, перпендикулярном его оси. Консольной балкой называют балку, которая заделана (защемлена) на одном конце и свободна на другом (рис.1). Условия заделки (защемления) должны исключить возможность поворота или смещения этой части балки, в то время как на свободном конце возможно и то, и другое.

Рис. 1. Схематичное изображение консольной балки, нагруженной на свободном конце сосредоточенной силой

Поперечные нагрузки, действующие на балку, заставляют ее изгибаться, т.е. деформируют продольную ось балки. В инженерной практике часто возникает необходимость определения прогибов в различных точках балки, что связано с ограничением предельно допустимых прогибов, например, валов или многочисленных строительных конструкций.

Уравнение прогиба упругой линии балки постоянного сечения (рис. 1):

 (1)

В начале координат (x = 0) прогиб наибольший:

, (2)

где E – модуль упругости материала балки; J – момент инерции поперечного сечения балки.

Напряжения (нормальные) от изгиба в любом сечении балки:

 (3)

где W– момент сопротивления поперечного сечения балки; x1– расстояние от средней точки между опорами деформометра до оси талрепа

Рис. 2. Распределение напряжений по сечению A – А балки при изгибе

Характер распределения напряжений от изгиба по сечению балки позволяет определить величину σmax (напряжения в крайних волокнах сечения) методом тензометрирования, т.е. измерением деформаций, и вычислением напряжений по закону Гука (рис. 2)

, (4)

где ε – деформации растяжения крайних волокон балки в направлении ее продольной оси.

Для экспериментального определения деформаций вообще (и при изгибе балок, в частности) широко используется механический тензометр Гугенбергера (рис.3). В нижней части корпуса 5 прибора закреплены неподвижная 2 и подвижная 13 призмы, определяющие базу l измерений. Изменение длины базы тензометра при деформации поверхности, на которой установлен прибор с помощью струбцины, приводит к повороту подвижной призмы и соединению с ней рычага 12, который с помощью траверсы 10 перемещает стрелку 6 относительно шкалы 3. Пружина 4 выбирает зазоры в подвижных соединениях для устранения "мертвого" хода. Винт 8 позволяет установить стрелку в закрепленном тензометре на любое место по шкале (например, на нулевую отметку), а также позволяет переставлять стрелку при измерениях деформаций, больших, чем деформации, соответствующие данной шкале. Шкала тензометра с базой 20 мм имеет 50 делений. Цена одного деления 0,05·10-3 .

Оборудование и материалы:

  1.  Установка для жесткого закрепления балки прямоугольного сечения с талрепом для перемещения свободного конца балки (рис.4);
  2.  Деформометр Гугенбергера;
  3.  Балка прямоугольного сечения;
  4.  Прибор для измерения величины прогиба: индикатор часового типа ИЧ-10 на штативе;
  5.  Линейка, штангенциркуль.

Рис. 5. Установка для нагружения консольных балок:

1 - основание; 2 - пластина с болтами для реализации схемы жесткой заделки балки; 3 - балка прямоугольного сечения; 4,6 - шарниры; 5 – талреп.

Меры безопасности:

К работе с указанной установкой допускаются лица, ознакомленные с её устройством, принципом действия и порядком проведения работы.

Задание:

Произвести замеры прогибов и деформаций, используя показания приборов (индикатора часового типа, тензометра Гугенбергера), в четырех сечениях балки равноудаленных друг от друга.

Порядок выполнения работы:

  1.  Измерить необходимые размеры консольной балки. Рассчитать осевые моменты инерции и сопротивления сечения балки.
  2.  Установить деформометр на балку, измерив расстояние х1 от средней точки между опорами деформометра до оси талрепа.
  3.  Установить индикатор часового типа ИЧ – 10 на штативе для измерения прогиба на расстоянии х от оси талрепа.
  4.  Нагрузить балку вращением талрепа на несколько делений по деформометру. Используя показания деформометра, рассчитать величину силы P, действующей по оси талрепа. Для данного значения силы P подсчитать прогиб балки на расстоянии х и сравнить его с фактическим по показаниям индикатора.
  5.  Занести в таблицу показания деформометра, расстояние х1, силу P, расчетное и экспериментальное значения прогиба на расстоянии х. Сравнить результаты расчета и эксперимента.
  6.  Повторить работу по пп. 2–5, установив приборы на других расстояниях от оси талрепа, нагружая балку до 5-6, 10-12, 15-17 делений (по деформометру).
  7.  Составить отчет и подготовиться к защите по теоретическим вопросам.

Содержание отчета:

  1.  Название и цель работы.
  2.  Задание.
  3.  Таблица с результатами показаний деформометра, индикатора часового; расчетных силы и прогибов.
  4.  Сравнение результатов полученных теоретически (вычисленных с помощью показаний тензометра) и практически (показания индикатора часового типа).
  5.  Выводы.

Контрольные вопросы:

  1.  Какие внутренние силовые факторы возникают в поперечных сечениях балок при изгибе?
  2.  Какой вид изгиба реализуется на лабораторной установке, используемой в работе?
  3.  Как распределены нормальные напряжения по высоте балки при изгибе?
  4.  В каких точках сечения нормальные напряжения максимальны?
  5.  Что такое осевой момент инерции сечения балки, и какова его размерность?
  6.  Что такое осевой момент сопротивления, и какова его размерность?
  7.  Как вычислить момент инерции относительно центральной оси для прямоугольного поперечного сечения балки?
  8.  Как вычислить момент сопротивления для прямоугольного поперечного сечения балки?
  9.  Что такое прогиб?
  10.  Каким прибором измеряют прогибы балок? Чему равна цена деления этого прибора?
  11.  Что такое деформация?
  12.  Каким прибором измеряют деформацию балок? Чему равна цена деления этого прибора?
  13.  Во сколько раз и в какую сторону изменятся прогибы и углы поворота балки, если, не меняя нагрузок и размеров  сечения, увеличить её длину вдвое?
  14.  Во сколько раз изменятся прогибы, если, не изменяя нагрузок и условий закрепления, увеличить все её линейные размеры в два раза?


 

А также другие работы, которые могут Вас заинтересовать

22244. Выбор измерительных средств 43 KB
  При выборе измерительных средств необходимо оценить допускаемую погрешность измерения а также определить положение приемочных границ т. Допускаемая погрешность измерения зависит от допуска на изготовление изделия который связан с номинальным размером. Для линейных размеров до 500 мм СТ СЭВ 303 76 в квалитетах 2 17 устанавливает 16 рядов допускаемых погрешностей измерения. Если допуск на изготовление не совпадает с допуском ЕСДП СЭВ погрешность измерения следует выбирать по ряду погрешностей установленному для ближайшего более...
22245. Характеристика единой системы допусков и посадок 247.5 KB
  Единая система – это есть единая система взаимозаменяемости. Эта система состоит важнейшими, из которых являются допуски и посадки гладких цилиндрических поверхностей. Единая система отличается от прежней системы принципом построения, значениями предельных отклонений, условными значениями допусков и посадок.
22246. Взаимозаменяемость, методы и средства контроля шпоночных и шлицевых соединений 127 KB
  Шпоночные соединения предназначены для передачи вращающегося момента и осевой силы. Шпонка – это соединённая деталь предназначенная для передачи вращающегося момента между валом и насаженным на него зубчатым колесом и обеспечивающая их одновременное вращение. Треугольные шлицы применяются для передачи малых нагрузок поэтому наиболее распространёнными являются прямобочные. С точки зрения прочностных и эксплуатационных требований все зубчатые передачи делятся на силовые скоростные передачи.
22247. ВИДЫ ВЗАИМОЗАМЕНЯЕМОСТИ И ТОЧЬНОСТЬ. ВЗАИМОЗАМЕНЯЕМОСТЬ. РАЗМЕРЫ,ОТКЛОНЕНИЯ,ДОПУСКИ, ПОСАДКИ 85.5 KB
  Er = D r – D er = d r – d Предельные отклонения: Es = D max – D – верхнее предельное отклонение отверстия; еs = d max – d – верхнее предельное отклонение вала; ei = d min – d – нижнее предельное отклонение вала; EI = D min – D – нижнее предельное отклонение отверстия. TD = D max – D min – допуск отверстия; Td = d max – d min – допуск вала. Dm = D max D min Единица допуска является функцией номинального размера. С зазором S min = D min – d max = EI – es S max = D max – d min = ES ei Частным случаем посадки с зазором...
22248. Метод групповой взаимозаменяемости 28.5 KB
  групповой зазор или натяг не обеспечивают однородности соединения так как он меняется при переходе от одной группы к другой при этом усложняются и удорожаются контрольные операции связи с тем что для такого отбора деталей требуется дополнительный измерительный инструмент. Создаются трудности при замене быстроизнашиваемых деталей. Решает следующие задачи: Устанавливает ответственные размеры и параметры деталей и узлов оказывают влияние на эксплуатационные показатели машин и на собираемость узлов. Уточняются номинальные величины...
22249. Расчет допусков размеров, входящих в размерные цепи 39 KB
  Составляющее звено – звено размерной цепи изменение которого вызывает изменение исходного или замыкающего звена. Увеличивающие – если с увеличением составляющего звена увеличивается размер исходного или замыкающего звена. Уменьшающие– если с уменьшением составляющего звена уменьшается размер исходного или замыкающего звена. Компенсирующее звено – предварительно выбранное звено размерной цепи изменение размера которого достигается требуемая точность замыкающего звена.
22250. Мониторинг в нейроанестезиологии и нейрореаниматологии 213 KB
  Мониторинг при операциях на стволе мозга Мониторинг при сосудистых операциях. Мониторинг в нейрореаниматологии оценка уровня сознания мониторинг витальных функций контроль ВЧД длительный контроль транскраниальная допплерография оценка метаболизма мозга Обеспечение безопасности больного находящегося в состоянии анестезии является одной из основных обязанностей анестезиолога. В нейрохирургии этот метод часто применяется при вмешательствах н сосудах головного мозга. Нейрофизиологический мониторинг Впервые регистрацию биоэлектрической...
22251. ТАКТИКА ВЕДЕНИЯ НАРУШЕНИЙ МОЗГОВОГО КРОВООБРАЩЕНИЯ 69.5 KB
  Частоту нарушений мозгового кровообращения НМК трудно установить так как определенное количество больных погибает вне клиники или не госпитализируется. Как бы то ни было НМК составляют около 5 объема скоропомощной практики. Сегодня подход к лечению НМК должен быть динамичным коллективным и мультидисциплинарным. Тактикой скоропомощного ведения пациента с подозрением на НМК кроме диагностики причины заболевания и оценки тяжести состояния должно быть срочное обеспече ние максимальной оксигенации головного мозга с целью минимизации...
22252. ОБЩИЕ ПРИНЦИПЫ ИНТЕНСИВНОЙ ТЕРАПИИ ПОСТРАДАВШИХ С СОЧЕТАНОЙ ЧЕРЕПНО-МОЗГОВОЙ ТРАВМОЙ 127 KB
  По данным к примеру клиники Военнополевой хирургии Военномедицинской академии за последние 10 лет частота поступления пострадавших с такой характеристикой повреждений составляет около . Анализ исходов течения травматической болезни у этой категории пострадавших свидетельствует о высокой степени неблагоприятных исходов напрямую коррелирующей с тяжестью ЧМТ степенью полисегментарности повреждения выраженностью шоковой реакции организма в целом. Интенсивная терапия пострадавших III группы нетяжелая ЧМТ и...