16312

Определение деформации при косом изгибе

Лабораторная работа

Производство и промышленные технологии

ОПРЕДЕЛЕНИЕ ПРОГИБОВ ПРИ КОСОМ ИЗГИБЕ Цель работы Ознакомление с косым изгибом консольного бруса и сравнение опытных значений прогиба с теоретическим. Содержание работы Если плоскость действия изгибающего момента возникающего в поперечном сечении бруса не сов...

Русский

2013-06-20

5.06 MB

33 чел.

ОПРЕДЕЛЕНИЕ ПРОГИБОВ ПРИ КОСОМ ИЗГИБЕ

Цель работы

Ознакомление с косым изгибом консольного бруса и сравнение опытных значений прогиба с теоретическим.

Содержание работы

 Если плоскость действия изгибающего момента, возникающего в поперечном сечении бруса, не совпадает ни с одной из его главных осей, то такой изгиб называется косым.

При плоском косом изгибе все нагрузки расположены в одной плоскости. В этом случае упругая линия бруса – плоская кривая, но в отличие от прямого изгиба плоскость, в которой она расположена, не совпадает с плоскостью действия нагрузок (рис.1).

Рис. 1. Плоский косой изгиб.

При пространственном косом изгибе нагрузки, вызывающие изгиб, расположены в разных продольных плоскостях бруса (рис.2). Упругая линия в этом случае - пространственная кривая.

Рис. 2. Пространственный косой изгиб.

При поперечном косом изгибе (как плоском, так и пространственном) в поперечном сечении бруса возникают четыре внутренних силовых фактора поперечные силы Qx, Qy и изгибающие моменты Мх, Му.

Рассмотрим плоский косой изгиб на примере бруса, нагруженного одной силой , приложенной в плоскости торцевого сечения таким образом, что ее линия действия составляет угол β с главной центральной осью OY (рис.3).

Рис. 3. Плоский косой изгиб бруса с прямоугольным сечением.

Разложим силу  на составляющие  по главным осям поперечного сечения ОХ и OY. Каждая их этих составляющих вызывает прямой изгиб бруса в одной из главных плоскостей:

сила  – в плоскости ZOY 

 и сила  – в плоскости ZOX.

Таким образом, косой изгиб можно рассматривать как совокупность двух прямых изгибов во взаимно перпендикулярных плоскостях ZOY и ZOX.

Для бруса, жестко защемленного одним концом и нагруженного силой на свободном конце, выражение для прогибов торцевого сечения имеет следующий вид:

  (1)

 (2)

где fx, fy– прямые прогибы в плоскостях ZOX и ZOY соответственно;

Е–модуль упругости материала бруса;

Jx, Jyмоменты инерции сечения относительно осей ОХ и OY соответственно;

l длина бруса;

Fсила, действующая на брус;

β– угол между линией действия силы F и главной осью сечения OY.

Полный прогиб свободного конца (рис. 4)

 (3)

Рис. 4. Вектор прогиба свободного конца бруса.

Определим направление полного прогиба по формуле:

 , (4)

где α– угол между направлением полного прогиба и главной осью OY.

Если , нулевая линия перпендикулярна силовой линии. В этом случае изгиб будет только прямым. Это возможно в случае, когда любая центральная ось сечения – главная ось. Таким образом, для сечений типа круг, квадрат и т.п., у которых все центральные оси – главные, косой изгиб невозможен.

Оборудование и материалы:

  1.  Установка ТМт – 13;
  2.  Индикаторы часового типа ИЧ – 10;
  3.  Грузы подвесные.

Установка (рис.5) выполнена в настольном исполнении и состоит из сварного основания 1, на котором справа закреплена стойка 2 в виде усеченной пирамиды, а слева цилиндрическая стойка 3.

При выполнении лабораторной работы на установке используются три балки. Одна из них имеет прямоугольное поперечное сечение, другая – равнобокий уголок, третья – круглая. Балка правым концом закрепляется на корпусе 5, имеющим угловую шкалу для установки угла поворота балки, и фиксируется крышкой 6. На левом конце контрольной балки установлена на шарикоподшипнике серьга 7, за которую зацепляется подвес 8 с грузами. На стойке 3 закреплен кронштейн с двумя индикаторными головками 9, измеряющими прогибы балки в двух взаимоперпендикулярных плоскостях, возникающих под действием грузов.

Рис. 5. Установка ТМт – 13.

Цена одного деления индикатора часового типа – 0,01 мм. Один оборот большой стрелки соответствует вертикальному перемещению штока индикатора на 1 мм. Полный рабочий ход штока – 10 мм.

Меры безопасности:

К работе с указанной установкой допускаются лица, ознакомленные с её устройством, принципом действия и порядком проведения работы.

Задание для выполнения работы:

Произвести замеры показаний индикаторов часового типа при следующих значениях массы груза 8 (рис. 5): 1, 2, 3, 4, 5 кг.

Порядок выполнения работы:

  1.  Ознакомиться с содержанием работы и конструкцией установки.
  2.  Освободить фиксирующую крышку 6. Установить контрольную балку в корпус 5. Зафиксировать балку под заданным углом поворота балки. Убедиться в устойчивости установки.
  3.  Убедиться, что запас хода штоков индикаторных головок 9 в нижнем направлении составляет не менее 10 мм, при необходимости переустановить головку.
  4.  Произвести юстировку показаний индикаторных головок при закреплении контрольной балки без нагружения грузами.
  5.  Получить у преподавателя задание на выполнение работы.
  6.  Нагрузить балку последовательно одинаковыми грузами.
  7.  С помощью индикаторных головок 9 произвести измерения горизонтальной fгор и вертикальной fвepm составляющих прогиба балки возникающих под действием грузов.
  8.  Определить тангенс угла наклона линии прогиба к вертикали φ (рис.6,а) по формуле

 

  1.  Определить величину полного прогиба fэксп (рис.6, а) по формуле

 .

В соответствии с тем, что балка нагружается в несколько этапов, получим несколько значений fэксп и φ. Из этих значений следует определить среднее арифметическое значения φ.

  1.  Рассчитать теоретические величины прямых прогибов fx и fy  (рис. 6,б) по формулам (1) и (2) и полного прогиба fтеор по формуле (3) при различных значениях груза 8 (рис. 5).
  2.  Определить тангенс угла наклона линии прогиба к оси OY (α) по формуле (4).
  3.  Определить теоретическое значение угла наклона линии прогиба к вертикали φтеор  (рис.6, б) по формуле

 

  1.  Построить графики зависимостей полных прогибов от величины силы F по теоретическим и экспериментальным данным. Сравнить теоретические и практические значения углов наклона линии к вертикали.

Рис. 6. К определению угла наклона линии прогиба к вертикали.

Содержание отчета:

  1.  Название и цель работы.
  2.  Задание.
  3.  Результаты эксперимента (измерений).
  4.  Расчет полных прогибов балки и углов наклона линии прогиба к вертикали по экспериментальным и теоретическим данным.
  5.  Графики полных прогибов от величины нагрузки, вычисленных теоретически и по экспериментальным данным.
  6.  Определение погрешности вычислений.
  7.  Выводы.

Контрольные вопросы:

  1.  В чем состоит явление косого изгиба? При каких условиях возникает косой изгиб?
  2.  Как вычисляются составляющие прогиба по главным осям?
  3.  Как вычислить полный прогиб и определить его направление?
  4.  Как найти направление нейтральной линии при косом изгибе?
  5.  Какие приборы используются для экспериментального определения прогиба? Что называют ценой деления шкалы прибора?
  6.  В каких случаях косой изгиб невозможен?
  7.  Какие оси называют главными? Для каких сечений положение главных осей очевидно? Приведите примеры.


 

А также другие работы, которые могут Вас заинтересовать

36309. Интегрированная система управления (СУ) 36.78 KB
  Интегрированная система управления СУ является иерархической многоуровневой. Разделение функционирования подсистем входящих в интегрированную систему управления по уровням обусловлено задачами решаемыми каждой из подсистем и в целом на предприятии. Рассмотрим разделение уровней в интегрированной системе управления предприятием и взаимосвязь выделенных уровней.Автоматизированная система управления предприятием обеспечивает административный персонал предприятия оперативной информацией о состоянии производства.
36310. Классификация исполнительных механизмов. Их характеристики 12.96 KB
  По виду энергии создающей перестановочное усилие ИМ делятся на гидравлические пневматические электрические и комбинированные. Гидравлические: мембранные поршневые лопастные гидромуфты Пневматические: мембранные поршневые сильфонные Электрические: электродвигатели электромагнитные электрические устройства позиционного типа переменной скорости постоянной скорости По типу движения все вышеперечисленные ИМ делятся на прямоходные однооборотные многооборотные.
36311. Приведите и поясните основные принципы управления 23.52 KB
  Управление по возмущению управление без обратной связи по регулируемой величине разомкнутые системы управления.Управление по отклонению управление с обратной связью по регулируемой величине замкнутые системы управления. Управление по возмущению В таких системах выходная величина объекта у не измеряется управляющее воздействие не зависит от у. Управление в разомкнутых системах может осуществляться: а в виде программного управления: при этом регулятор УУ действует по заранее заданной...
36312. Стадии и этапы проектирования систем автоматизации 15.92 KB
  Исследование и обоснование создания АСУТП. На этой стадии формируют цель создания АСУТП требования к системе в целом перечень автоматизируемых функций а также определяют источники эффективности системы. На этой стадии проводят анализ известных случаев применения АСУТП для аналогичных объектов и техникоэкономическое обследование существующего ТехОбУпр. Результатом работ на этой стадии являются техникоэкономическое обоснование ТЭО создания АСУТП и результаты обследования и анализа ТОУ в виде отчета.
36313. Исполнительное устройство – силовое устройство, которое изменяет величину регулируемого параметра в соответствии с сигналом, подающимся от регулирующего устройства 30.48 KB
  Исполнительное устройство силовое устройство которое изменяет величину регулируемого параметра в соответствии с сигналом подающимся от регулирующего устройства. Схема исполнительного устройства: Исполнительное устройство должно иметь вспомогательные средства управления. На входе исполнительного устройства ставят блоки усиления БУ которые усиливают командный сигнал для передачи от регулирующего устройства к исполнительному.
36314. Виды и типы схем. Их назначение. Примеры 76.8 KB
  Виды и типы схем При разработке схем автоматического управления и технологического контроля применяют различные приборы и средства автоматизации соединяемые с объектом управления и между собой по определенным схемам. В зависимости от используемых приборов и средств автоматизации электрических пневматических гидравлических и линейной связи в проектах автоматизации разрабатывают схемы которые различают по видам и типам. Наибольшее распространение в практике автоматизации технологических процессов получили электрические приборы и средства...
36315. Выбор типа исполнительного механизма 11.96 KB
  ИМ выбирают в зависимости от величины усилия необходимого для перестановки регулирующего клапана или величины момента для поворотных заслонок. Для поворотных заслонок величину момента Нм необходимого для их вращения определяют по формуле М=кМрМт где Мр реактивный момент; к 2 ÷ 3 коэффициент учитывающий затяжку сальников и загрязненность трубопровода; Мт момент трения. Момент на валу ИМ д б равен или больше момента необходимого для вращения заслонки. Реактивный момент обусловленный стремлением потока закрыть заслонку равен:...
36316. Задачи расписания и упорядочения 12.1 KB
  Задачи расписания и упорядочения Задачи распределения и упорядочения возникают тогда когда требуется установить последовательность выполнения операций на различных агрегатах и определить время начала и окончания этих операций. Рассмотрим схему прокатки металла на сортовом стане отражающую производственную структуру участка для которой требуется определить расписание работы: В этом случае задача состоит в определении расписания и выполнения операций при которых некоторый критерий оценки эффективности работы объекта принимает экстремальное...
36317. Импульсные характеристики статических объектов. Определение параметров объекта по импульсным характеристикам 16.59 KB
  Определение параметров объекта по импульсным характеристикам. При снятии кривых разгона приходится вносить длительные и достаточно существенные возмущения в работу объекта. При этом возмущение в работу объекта вносят на сравнительно короткое время но при этом его величина может быть значительно больше чем при ступенчатом. Для объекта без самовыравнивания Коб=.