16312

Определение деформации при косом изгибе

Лабораторная работа

Производство и промышленные технологии

ОПРЕДЕЛЕНИЕ ПРОГИБОВ ПРИ КОСОМ ИЗГИБЕ Цель работы Ознакомление с косым изгибом консольного бруса и сравнение опытных значений прогиба с теоретическим. Содержание работы Если плоскость действия изгибающего момента возникающего в поперечном сечении бруса не сов...

Русский

2013-06-20

5.06 MB

33 чел.

ОПРЕДЕЛЕНИЕ ПРОГИБОВ ПРИ КОСОМ ИЗГИБЕ

Цель работы

Ознакомление с косым изгибом консольного бруса и сравнение опытных значений прогиба с теоретическим.

Содержание работы

 Если плоскость действия изгибающего момента, возникающего в поперечном сечении бруса, не совпадает ни с одной из его главных осей, то такой изгиб называется косым.

При плоском косом изгибе все нагрузки расположены в одной плоскости. В этом случае упругая линия бруса – плоская кривая, но в отличие от прямого изгиба плоскость, в которой она расположена, не совпадает с плоскостью действия нагрузок (рис.1).

Рис. 1. Плоский косой изгиб.

При пространственном косом изгибе нагрузки, вызывающие изгиб, расположены в разных продольных плоскостях бруса (рис.2). Упругая линия в этом случае - пространственная кривая.

Рис. 2. Пространственный косой изгиб.

При поперечном косом изгибе (как плоском, так и пространственном) в поперечном сечении бруса возникают четыре внутренних силовых фактора поперечные силы Qx, Qy и изгибающие моменты Мх, Му.

Рассмотрим плоский косой изгиб на примере бруса, нагруженного одной силой , приложенной в плоскости торцевого сечения таким образом, что ее линия действия составляет угол β с главной центральной осью OY (рис.3).

Рис. 3. Плоский косой изгиб бруса с прямоугольным сечением.

Разложим силу  на составляющие  по главным осям поперечного сечения ОХ и OY. Каждая их этих составляющих вызывает прямой изгиб бруса в одной из главных плоскостей:

сила  – в плоскости ZOY 

 и сила  – в плоскости ZOX.

Таким образом, косой изгиб можно рассматривать как совокупность двух прямых изгибов во взаимно перпендикулярных плоскостях ZOY и ZOX.

Для бруса, жестко защемленного одним концом и нагруженного силой на свободном конце, выражение для прогибов торцевого сечения имеет следующий вид:

  (1)

 (2)

где fx, fy– прямые прогибы в плоскостях ZOX и ZOY соответственно;

Е–модуль упругости материала бруса;

Jx, Jyмоменты инерции сечения относительно осей ОХ и OY соответственно;

l длина бруса;

Fсила, действующая на брус;

β– угол между линией действия силы F и главной осью сечения OY.

Полный прогиб свободного конца (рис. 4)

 (3)

Рис. 4. Вектор прогиба свободного конца бруса.

Определим направление полного прогиба по формуле:

 , (4)

где α– угол между направлением полного прогиба и главной осью OY.

Если , нулевая линия перпендикулярна силовой линии. В этом случае изгиб будет только прямым. Это возможно в случае, когда любая центральная ось сечения – главная ось. Таким образом, для сечений типа круг, квадрат и т.п., у которых все центральные оси – главные, косой изгиб невозможен.

Оборудование и материалы:

  1.  Установка ТМт – 13;
  2.  Индикаторы часового типа ИЧ – 10;
  3.  Грузы подвесные.

Установка (рис.5) выполнена в настольном исполнении и состоит из сварного основания 1, на котором справа закреплена стойка 2 в виде усеченной пирамиды, а слева цилиндрическая стойка 3.

При выполнении лабораторной работы на установке используются три балки. Одна из них имеет прямоугольное поперечное сечение, другая – равнобокий уголок, третья – круглая. Балка правым концом закрепляется на корпусе 5, имеющим угловую шкалу для установки угла поворота балки, и фиксируется крышкой 6. На левом конце контрольной балки установлена на шарикоподшипнике серьга 7, за которую зацепляется подвес 8 с грузами. На стойке 3 закреплен кронштейн с двумя индикаторными головками 9, измеряющими прогибы балки в двух взаимоперпендикулярных плоскостях, возникающих под действием грузов.

Рис. 5. Установка ТМт – 13.

Цена одного деления индикатора часового типа – 0,01 мм. Один оборот большой стрелки соответствует вертикальному перемещению штока индикатора на 1 мм. Полный рабочий ход штока – 10 мм.

Меры безопасности:

К работе с указанной установкой допускаются лица, ознакомленные с её устройством, принципом действия и порядком проведения работы.

Задание для выполнения работы:

Произвести замеры показаний индикаторов часового типа при следующих значениях массы груза 8 (рис. 5): 1, 2, 3, 4, 5 кг.

Порядок выполнения работы:

  1.  Ознакомиться с содержанием работы и конструкцией установки.
  2.  Освободить фиксирующую крышку 6. Установить контрольную балку в корпус 5. Зафиксировать балку под заданным углом поворота балки. Убедиться в устойчивости установки.
  3.  Убедиться, что запас хода штоков индикаторных головок 9 в нижнем направлении составляет не менее 10 мм, при необходимости переустановить головку.
  4.  Произвести юстировку показаний индикаторных головок при закреплении контрольной балки без нагружения грузами.
  5.  Получить у преподавателя задание на выполнение работы.
  6.  Нагрузить балку последовательно одинаковыми грузами.
  7.  С помощью индикаторных головок 9 произвести измерения горизонтальной fгор и вертикальной fвepm составляющих прогиба балки возникающих под действием грузов.
  8.  Определить тангенс угла наклона линии прогиба к вертикали φ (рис.6,а) по формуле

 

  1.  Определить величину полного прогиба fэксп (рис.6, а) по формуле

 .

В соответствии с тем, что балка нагружается в несколько этапов, получим несколько значений fэксп и φ. Из этих значений следует определить среднее арифметическое значения φ.

  1.  Рассчитать теоретические величины прямых прогибов fx и fy  (рис. 6,б) по формулам (1) и (2) и полного прогиба fтеор по формуле (3) при различных значениях груза 8 (рис. 5).
  2.  Определить тангенс угла наклона линии прогиба к оси OY (α) по формуле (4).
  3.  Определить теоретическое значение угла наклона линии прогиба к вертикали φтеор  (рис.6, б) по формуле

 

  1.  Построить графики зависимостей полных прогибов от величины силы F по теоретическим и экспериментальным данным. Сравнить теоретические и практические значения углов наклона линии к вертикали.

Рис. 6. К определению угла наклона линии прогиба к вертикали.

Содержание отчета:

  1.  Название и цель работы.
  2.  Задание.
  3.  Результаты эксперимента (измерений).
  4.  Расчет полных прогибов балки и углов наклона линии прогиба к вертикали по экспериментальным и теоретическим данным.
  5.  Графики полных прогибов от величины нагрузки, вычисленных теоретически и по экспериментальным данным.
  6.  Определение погрешности вычислений.
  7.  Выводы.

Контрольные вопросы:

  1.  В чем состоит явление косого изгиба? При каких условиях возникает косой изгиб?
  2.  Как вычисляются составляющие прогиба по главным осям?
  3.  Как вычислить полный прогиб и определить его направление?
  4.  Как найти направление нейтральной линии при косом изгибе?
  5.  Какие приборы используются для экспериментального определения прогиба? Что называют ценой деления шкалы прибора?
  6.  В каких случаях косой изгиб невозможен?
  7.  Какие оси называют главными? Для каких сечений положение главных осей очевидно? Приведите примеры.


 

А также другие работы, которые могут Вас заинтересовать

12183. Строении и принцип действия клавиатуры и мыши 98.7 KB
  Лабораторная работа № 18 Строении и принцип действия клавиатуры и мыши 1. Цель работы Изучение принципа действия клавиатуры и мыши. 2. Теоретические сведения Клавиатура Клавиатура выполнена как правило в виде отдельного устройства подключаемого к компьютеру то...
12184. Тестирование ОЗУ 146.7 KB
  Лабораторная работа № 13 Тестирование ОЗУ 1. Цель работы Изучение основных характеристик ОЗУ и выявление их ошибок 2. Теоретические сведения Основными характеристиками ОЗУ являются время доступа быстродействие емкость. Время доступа это промежуток времени за...
12185. Расположение компонентов в ПК 297.4 KB
  Лабораторная работа № 11 Расположение компонентов в ПК. 1. Цель работы Изучение расположения компонентов в ПК и их назначение. 2. Теоретические сведения Компоненты компьютера Если вы пользуетесь настольным компьютером то наверное уже знаете что не существует о
12186. Мониторинг работоспособности материнской платы 41.91 KB
  Лабораторная работа № 17 Мониторинг работоспособности материнской платы 1. Цель работы Научиться диагностировать работоспособность системной платы 2. Теоретические сведения SpeedFan мощная утилита мониторинга Задача мониторинга критически важных параметров р
12187. СИРОВИННІ МАТЕРІАЛИ МАРТЕНІВСЬКОГО ВИРОБНИЦТВА 1.09 MB
  1 СИРОВИННІ МАТЕРІАЛИ МАРТЕНІВСЬКОГО ВИРОБНИЦТВА Шихтові матеріали поділяються на металеві і неметалічні. До металевої частини шихти відносяться: чавун брухт розкислювачі і легуючі добавки; до неметалічної – залізна і марганцева руда окалина агломерат вапняк і ва...
12188. ОСОБЛИВОСТІ ПОБУДОВИ ЗЛИВКІВ СПОКІЙНОЇ, КИПЛЯЧОЇ ТА НАПІВСПОКІЙНОЇ СТАЛЕЙ 797.5 KB
  ОСОБЛИВОСТІ ПОБУДОВИ ЗЛИВКІВ СПОКІЙНОЇ КИПЛЯЧОЇ ТА НАПІВСПОКІЙНОЇ СТАЛЕЙ Особливості побудови зливка спокійної сталі Звичайна структура зливка спокійної сталі рис. 7.1 характеризується наступними основними зонами. Зона 1. Тонкий поверхневий шар що утвор
12189. ВИЗНАЧЕННЯ ВМІСТУ ВУГЛЕЦЮ В СТАЛІ ЗА ДОПОМОГОЮ КАРБОМЕТРУ ALPHA 1.03 MB
  ВИЗНАЧЕННЯ ВМІСТУ ВУГЛЕЦЮ в СТАЛІ ЗА ДОПОМОГОЮ карбометру ALPHA Ціль роботи: вивчити методи контролю вмісту вуглецю в сталі; освоїти один з фізичних методів визначення вуглецю в сталі. Теоретичне введення Перед проведенням лабораторної роботи студент зобовя
12190. ХРОНОМЕТРАЖ ПЛАВКИ В СТАЛЕПЛАВИЛЬНОМУ АГРЕГАТІ 31.5 KB
  ХРОНОМЕТРАЖ ПЛАВКИ В СТАЛЕПЛАВИЛЬНОМУ АГРЕГАТІ Мета роботи: 1. Вивчити конструкцію сталеплавильного агрегату. 2. Ознайомитись з організацією робіт сталеплавильного агрегату. 3. Вивчити технологію плавки в сталеплавильному агрегаті. Перед проведенням ла...
12191. Определение порядка реакции по мурексиду и ката¬лизатору (кислоте) 282.69 KB
  Цель работы: определение порядка реакции по мурексиду и катализатору кислоте; определение константы диссоциации слабой кислоты путем кинетических измерений. Схема установки Рис. 1. Общий вид прибора где 1 – узел светофильтров 2 – узел кюветодержателя 3 – и