16312

Определение деформации при косом изгибе

Лабораторная работа

Производство и промышленные технологии

ОПРЕДЕЛЕНИЕ ПРОГИБОВ ПРИ КОСОМ ИЗГИБЕ Цель работы Ознакомление с косым изгибом консольного бруса и сравнение опытных значений прогиба с теоретическим. Содержание работы Если плоскость действия изгибающего момента возникающего в поперечном сечении бруса не сов...

Русский

2013-06-20

5.06 MB

31 чел.

ОПРЕДЕЛЕНИЕ ПРОГИБОВ ПРИ КОСОМ ИЗГИБЕ

Цель работы

Ознакомление с косым изгибом консольного бруса и сравнение опытных значений прогиба с теоретическим.

Содержание работы

 Если плоскость действия изгибающего момента, возникающего в поперечном сечении бруса, не совпадает ни с одной из его главных осей, то такой изгиб называется косым.

При плоском косом изгибе все нагрузки расположены в одной плоскости. В этом случае упругая линия бруса – плоская кривая, но в отличие от прямого изгиба плоскость, в которой она расположена, не совпадает с плоскостью действия нагрузок (рис.1).

Рис. 1. Плоский косой изгиб.

При пространственном косом изгибе нагрузки, вызывающие изгиб, расположены в разных продольных плоскостях бруса (рис.2). Упругая линия в этом случае - пространственная кривая.

Рис. 2. Пространственный косой изгиб.

При поперечном косом изгибе (как плоском, так и пространственном) в поперечном сечении бруса возникают четыре внутренних силовых фактора поперечные силы Qx, Qy и изгибающие моменты Мх, Му.

Рассмотрим плоский косой изгиб на примере бруса, нагруженного одной силой , приложенной в плоскости торцевого сечения таким образом, что ее линия действия составляет угол β с главной центральной осью OY (рис.3).

Рис. 3. Плоский косой изгиб бруса с прямоугольным сечением.

Разложим силу  на составляющие  по главным осям поперечного сечения ОХ и OY. Каждая их этих составляющих вызывает прямой изгиб бруса в одной из главных плоскостей:

сила  – в плоскости ZOY 

 и сила  – в плоскости ZOX.

Таким образом, косой изгиб можно рассматривать как совокупность двух прямых изгибов во взаимно перпендикулярных плоскостях ZOY и ZOX.

Для бруса, жестко защемленного одним концом и нагруженного силой на свободном конце, выражение для прогибов торцевого сечения имеет следующий вид:

  (1)

 (2)

где fx, fy– прямые прогибы в плоскостях ZOX и ZOY соответственно;

Е–модуль упругости материала бруса;

Jx, Jyмоменты инерции сечения относительно осей ОХ и OY соответственно;

l длина бруса;

Fсила, действующая на брус;

β– угол между линией действия силы F и главной осью сечения OY.

Полный прогиб свободного конца (рис. 4)

 (3)

Рис. 4. Вектор прогиба свободного конца бруса.

Определим направление полного прогиба по формуле:

 , (4)

где α– угол между направлением полного прогиба и главной осью OY.

Если , нулевая линия перпендикулярна силовой линии. В этом случае изгиб будет только прямым. Это возможно в случае, когда любая центральная ось сечения – главная ось. Таким образом, для сечений типа круг, квадрат и т.п., у которых все центральные оси – главные, косой изгиб невозможен.

Оборудование и материалы:

  1.  Установка ТМт – 13;
  2.  Индикаторы часового типа ИЧ – 10;
  3.  Грузы подвесные.

Установка (рис.5) выполнена в настольном исполнении и состоит из сварного основания 1, на котором справа закреплена стойка 2 в виде усеченной пирамиды, а слева цилиндрическая стойка 3.

При выполнении лабораторной работы на установке используются три балки. Одна из них имеет прямоугольное поперечное сечение, другая – равнобокий уголок, третья – круглая. Балка правым концом закрепляется на корпусе 5, имеющим угловую шкалу для установки угла поворота балки, и фиксируется крышкой 6. На левом конце контрольной балки установлена на шарикоподшипнике серьга 7, за которую зацепляется подвес 8 с грузами. На стойке 3 закреплен кронштейн с двумя индикаторными головками 9, измеряющими прогибы балки в двух взаимоперпендикулярных плоскостях, возникающих под действием грузов.

Рис. 5. Установка ТМт – 13.

Цена одного деления индикатора часового типа – 0,01 мм. Один оборот большой стрелки соответствует вертикальному перемещению штока индикатора на 1 мм. Полный рабочий ход штока – 10 мм.

Меры безопасности:

К работе с указанной установкой допускаются лица, ознакомленные с её устройством, принципом действия и порядком проведения работы.

Задание для выполнения работы:

Произвести замеры показаний индикаторов часового типа при следующих значениях массы груза 8 (рис. 5): 1, 2, 3, 4, 5 кг.

Порядок выполнения работы:

  1.  Ознакомиться с содержанием работы и конструкцией установки.
  2.  Освободить фиксирующую крышку 6. Установить контрольную балку в корпус 5. Зафиксировать балку под заданным углом поворота балки. Убедиться в устойчивости установки.
  3.  Убедиться, что запас хода штоков индикаторных головок 9 в нижнем направлении составляет не менее 10 мм, при необходимости переустановить головку.
  4.  Произвести юстировку показаний индикаторных головок при закреплении контрольной балки без нагружения грузами.
  5.  Получить у преподавателя задание на выполнение работы.
  6.  Нагрузить балку последовательно одинаковыми грузами.
  7.  С помощью индикаторных головок 9 произвести измерения горизонтальной fгор и вертикальной fвepm составляющих прогиба балки возникающих под действием грузов.
  8.  Определить тангенс угла наклона линии прогиба к вертикали φ (рис.6,а) по формуле

 

  1.  Определить величину полного прогиба fэксп (рис.6, а) по формуле

 .

В соответствии с тем, что балка нагружается в несколько этапов, получим несколько значений fэксп и φ. Из этих значений следует определить среднее арифметическое значения φ.

  1.  Рассчитать теоретические величины прямых прогибов fx и fy  (рис. 6,б) по формулам (1) и (2) и полного прогиба fтеор по формуле (3) при различных значениях груза 8 (рис. 5).
  2.  Определить тангенс угла наклона линии прогиба к оси OY (α) по формуле (4).
  3.  Определить теоретическое значение угла наклона линии прогиба к вертикали φтеор  (рис.6, б) по формуле

 

  1.  Построить графики зависимостей полных прогибов от величины силы F по теоретическим и экспериментальным данным. Сравнить теоретические и практические значения углов наклона линии к вертикали.

Рис. 6. К определению угла наклона линии прогиба к вертикали.

Содержание отчета:

  1.  Название и цель работы.
  2.  Задание.
  3.  Результаты эксперимента (измерений).
  4.  Расчет полных прогибов балки и углов наклона линии прогиба к вертикали по экспериментальным и теоретическим данным.
  5.  Графики полных прогибов от величины нагрузки, вычисленных теоретически и по экспериментальным данным.
  6.  Определение погрешности вычислений.
  7.  Выводы.

Контрольные вопросы:

  1.  В чем состоит явление косого изгиба? При каких условиях возникает косой изгиб?
  2.  Как вычисляются составляющие прогиба по главным осям?
  3.  Как вычислить полный прогиб и определить его направление?
  4.  Как найти направление нейтральной линии при косом изгибе?
  5.  Какие приборы используются для экспериментального определения прогиба? Что называют ценой деления шкалы прибора?
  6.  В каких случаях косой изгиб невозможен?
  7.  Какие оси называют главными? Для каких сечений положение главных осей очевидно? Приведите примеры.


 

А также другие работы, которые могут Вас заинтересовать

1509. Валютный рынок России 107.5 KB
  Формирование российского валютного рынка. Валютное регулирование. Регулирование валютного курса рубля и динамика его изменения. Перспективы развития российского рынка и стабилизации курса рубля.
1510. Понятия миссии и миссионерства/ О православной миссии 107.48 KB
  Понятия миссии и миссионерства. Традиционные и нетрадиционные религии. Причины возникновения миссионерства. Методология миссионерства. Основной принцип миссионера. Оружие миссионера.
1511. Анализ предприятия по его производственных цехов по производству военного оборудования 94.01 KB
  Структура предприятия и ее общая характеристика. Материально техническое снабжение предприятия. КИП и А, технологическое оборудование на предприятии. Анализ поступления изделий на участок. Разработка технологии настройки изделия.
1512. Композиционные материалы 67 KB
  Выбор материала корпуса. Армирующий материал. Выбор материала электродов. Свойства полипропилена, и его производство на предприятиях химической промышленности применяются различная аппаратура: реакторы, технологические газоходы, циклоны, каплеуловители, емкости и т.п.
1513. Проектирование предприятия по производству насосов 98.08 KB
  Определение плана производства и обоснование производственной мощности (на примере производства насосов). Технико-экономическое обоснование варианта размещения предприятия. Транспортные затраты по обеспечению завода материалами и полуфабрикатами.
1514. Принципы работы в основных компьютерных программах Microsoft 478 KB
  Система MIKROSOFT OUTLOOK, в планировании работ и событий. Текстовый редактор MICROSOFT WORD, в организации документоведения. Система Microsoft Exel. Работа с электронными таблицами. Создание презентаций в системе Ms Power Point.
1515. Звіт про виконання лабораторних робіт з дисципліни економічної інформатики 38.22 KB
  Моделювання математичних процесів. Моделювання обчислень в економічних задачах табличного вигляду. Кругові графіки. Моделювання циклічних процесів.
1516. Проект одноступенчатого редуктора для электродвигателя марки А100S2У3 28.75 KB
  Номинальные частоты вращения и угловые скорости редуктора. Делительный диаметр червячного колеса. Предварительный Расчет валов редуктора и конструирование червяка и червячного колеса. Конструкционные размеры корпуса редуктора.
1517. Расчет зоны покрытия и абонентской нагрузкидля базовой станции стандарта GSM 77.97 KB
  Расчет зоны покрытия БС с помощью модели Хата. Расчет нагрузки в соте. Вероятность отказа в обслуживании сотой абонента в зависимости от количества каналов.