16364

Определение теплопроводности твердых теплоизоляционных материалов

Лабораторная работа

Физика

Лабораторная работа №1. Определение теплопроводности твердых теплоизоляционных материалов Цель и задачи работы: ознакомление со стационарным методом измерения коэффициентов теплопроводности теплоизоляционных материалов и про...

Русский

2013-06-20

133 KB

24 чел.

PAGE   \* MERGEFORMAT 3

Лабораторная работа №1.

Определение теплопроводности твердых теплоизоляционных материалов

Цель и задачи работы:

- ознакомление со стационарным методом измерения коэффициентов теплопроводности теплоизоляционных материалов и проведение измерений теплопроводности на автоматизированном учебном лабораторном стенде;

- экспериментальное определение коэффициента теплопроводности  теплоизоляционного материала.

Основные сведения

Стационарные методы измерения теплопроводности, простейшие по теоретическому обоснованию, начали развиваться раньше других методов и в  настоящее время достигли значительного совершенства за счет использование современных средств контроля и измерения. С их помощью исследуются самые различные материалы: металлы, полупроводники, теплоизоляторы, волокна, порошки, жидкости и газы.

Для изучения теплопроводности твердых теплоизоляционных материалов, неметаллических жидкостей и газов применяются, в основном, методы, в которых испытуемый образец имеет форму пластины, трубы или полого шара и обеспечиваются условия для протекания через образец одномерного теплового потока.

Рассмотрим плоскопараллельную пластину, пронизываемую одномерным тепловым потоком с линиями тока, перпендикулярными к поверхности пластины. Теплообмен теплопроводностью через такую стенку происходит согласно закону Фурье:

, (Вт/м2)     (1)

где   - коэффициент теплопроводности материала пластины, (Вт/(м*К));   - температуры боковых поверхностей температуры, (К);   - толщина пластины, м

Формула (1) применяется в том случае, если коэффициент λ принимается  постоянным, не зависящим от температуры, что справедливо при малых перепадах температуры. В общем случае следует учитывать температурную зависимость коэффициента теплопроводности материала.

Известно, что для большинства теплоизоляционных материалов в узком интервале температур (до 50 К) величина коэффициента теплопроводности с достаточной степенью точности описывается линейной функцией вида:

При использовании образцов конечных размеров часть теплового потока, поступающего в образец, рассеивается во внешнюю среду – это требуется учитывать в эксперименте.

Если образцы изготовлены из воздушно-пористых материалов  малой  плотности, или исследуются газы или жидкости, то влиянием контактных сопротивлений можно пренебречь.

В настоящее время известно много разнообразных практических схем  

стационарного  метода  плоского  слоя  для  измерения  теплопроводности

материалов.

Описание экспериментальной установки

Используемая в эксперименте установка (рис. 1) состоит из основания (1) монтажными стойками (2), удерживающими прижимной механизм (6, 11) охладителя (8, 9). Нагреватель (4), установленный на пенопластовой основе (3) подключается к автоматическому трансформатору (13). К нагревателю сверху плотно прижимается испытуемый образец (5) диаметром 120 мм и толщиной 25 мм. Вся система смонтирована в корпусе с полыми стенками заполненными вакуумом (8). Термопара Т1 закреплена на корпусе нагревателя снизу, Т2 – сверху, Т3 – со стороны нагревателя у боковой стенки образца, Т4 – посередине с холодной стороны. Температуры Т1 и Т2 выводятся на измеритель ТРМ 200, расположенный слева (7) (Т1 – красный дисплей, Т2 – зеленый), а температуры Т3 и Т4 соответственно на измерителе справа (12) (Т3 –красный дисплей, Т4- зеленый). Напряжение на автотрансформаторе (ЛАТР) отображается на его стрелочном приборе, а также может фиксироваться мультиметром.

Рисунок 1 – Схема экспериментальной установки

  1.  основание, 2 – стойка монтажная, 3 – нижняя прослойка пенопласта, 4 - нагреватель, 5 – испытываемый образец, 6 – прижимные гайки, 7, 12 – измерители ТРМ 200, 8 – теплоизолирующий кожух, 9 – вентилятор, 10 – радиатор, прижимная пластина, 13 – ЛАТР, 14 – измеритель напряжения на выходе ЛАТРа.

Напряжение нагревателя регулируется автотрансформатором, ограниченным диапазоном регулирования до 25 В. В процессе регулирование к клеммам «выход» подключается мультиметр для более точной фиксации напряжения подаваемого на нагреватель. Сигналы с термопар в режиме реального времени отображаются на измерителях ТРМ 200.

 

Обработка результатов

  1.  Коэффициент формы образца      , (м-1)

где  F – площадь поверхности образца, , м2;

 - толщина образца, м.

  1.  Тепловой поток от нагревателя     , Вт

где  U – напряжение, подаваемое на нагреватель определяется по показаниям вольтметра, установленного в ЛАТР, В

 R – сопротивление нагревателя, R=30 Ом

  1.  Для каждого режима посчитать коэффициент теплопроводности:

,

где   - средние температуры поверхностей образца с горячей и холодной стороны соответственно, К;

Учитывая, что образец находится в термостатирующей оболочке, заполненной вакуумом, то радиальными потерями можно пренебречь.

Параметры процесса

№№

F, м2

Q, Вт

tг, К

tх, К

, К

, Вт/(м*К)

1

Выводы

Среднеквадратичная относительная погрешность:

.

PAGE  

PAGE  3


 

А также другие работы, которые могут Вас заинтересовать

2250. Проектирование понизительной подстанции электроснабжения электрифицированной железной дороги. 1.13 MB
  Распределительное устройство 110 кВ промежуточной транзитной подстанции. Составление расчетной схемы и схемы замещения. Расчёт токов короткого замыкания. Выбор основного оборудования и токоведущих элементов подстанции. Выбор устройств защиты от перенапряжения.
2251. Сервисный центр по ремонту и обслуживанию офисной техники с использованием средств Microsoft Access 991.23 KB
  Описание бизнес-процесса при помощи методологии структурного анализа и проектирования (SADT). Создание форм с помощью конструктора. Структура таблицы и типы данных.
2252. Мероприятие: В стране невыученных уроков 19.84 KB
  Внеклассное мероприятие посвященное ко дню учителя, отображающее учеников которые не хотят учить уроки.
2253. Экономическая теория прав собственности 16.42 KB
  Современная экономическая теория получила развитие направление называемое неоинституционализм. Одним из важнейших направлений этого подхода является экономическая теория прав собственности. У истоков стоял такой известнейший экономист Рональд Коуз.
2254. Экономическое право 17.74 KB
  Право собственности на природные ресурсы. Право природного пользования. Правовые формы использования природных ресурсов.
2255. Строительная механика. Специальный курс. Применение метода граничных элементов 6.82 MB
  В учебном пособии изложен новый метод расчета статически определимых и статически неопределимых стержневых и пластинчатых систем на статические и динамические нагрузки, а также на устойчивость. Приведено большое количество характерных типовых задач и примеров с краткими указаниями к их решению. Значительное место уделено математической постановке задач и их решению с помощью персональных компьютеров.
2256. Гласные звуки. Деление слова на слоги. Слогообразующая роль гласных звуков 18.21 KB
  Цели: познакомить учащихся с понятием слог, научить детей делить слова на слоги, развивать речь, внимание, память, воспитывать трудолюбие, аккуратность в работе.
2257. День делового человека 19.55 KB
  Tasks: совершенствование навыков поискового чтения, активизация лексических навыков, развитие навыков постановки вопросов.
2258. Господарське право та господарське законодавство 17.96 KB
  Метою вивчення теми є розуміння студентами місця господарського права серед галузей права України, а також розуміння ними системи та специфіки господарського законодавства України.