16364

Определение теплопроводности твердых теплоизоляционных материалов

Лабораторная работа

Физика

Лабораторная работа №1. Определение теплопроводности твердых теплоизоляционных материалов Цель и задачи работы: ознакомление со стационарным методом измерения коэффициентов теплопроводности теплоизоляционных материалов и про...

Русский

2013-06-20

133 KB

20 чел.

PAGE   \* MERGEFORMAT 3

Лабораторная работа №1.

Определение теплопроводности твердых теплоизоляционных материалов

Цель и задачи работы:

- ознакомление со стационарным методом измерения коэффициентов теплопроводности теплоизоляционных материалов и проведение измерений теплопроводности на автоматизированном учебном лабораторном стенде;

- экспериментальное определение коэффициента теплопроводности  теплоизоляционного материала.

Основные сведения

Стационарные методы измерения теплопроводности, простейшие по теоретическому обоснованию, начали развиваться раньше других методов и в  настоящее время достигли значительного совершенства за счет использование современных средств контроля и измерения. С их помощью исследуются самые различные материалы: металлы, полупроводники, теплоизоляторы, волокна, порошки, жидкости и газы.

Для изучения теплопроводности твердых теплоизоляционных материалов, неметаллических жидкостей и газов применяются, в основном, методы, в которых испытуемый образец имеет форму пластины, трубы или полого шара и обеспечиваются условия для протекания через образец одномерного теплового потока.

Рассмотрим плоскопараллельную пластину, пронизываемую одномерным тепловым потоком с линиями тока, перпендикулярными к поверхности пластины. Теплообмен теплопроводностью через такую стенку происходит согласно закону Фурье:

, (Вт/м2)     (1)

где   - коэффициент теплопроводности материала пластины, (Вт/(м*К));   - температуры боковых поверхностей температуры, (К);   - толщина пластины, м

Формула (1) применяется в том случае, если коэффициент λ принимается  постоянным, не зависящим от температуры, что справедливо при малых перепадах температуры. В общем случае следует учитывать температурную зависимость коэффициента теплопроводности материала.

Известно, что для большинства теплоизоляционных материалов в узком интервале температур (до 50 К) величина коэффициента теплопроводности с достаточной степенью точности описывается линейной функцией вида:

При использовании образцов конечных размеров часть теплового потока, поступающего в образец, рассеивается во внешнюю среду – это требуется учитывать в эксперименте.

Если образцы изготовлены из воздушно-пористых материалов  малой  плотности, или исследуются газы или жидкости, то влиянием контактных сопротивлений можно пренебречь.

В настоящее время известно много разнообразных практических схем  

стационарного  метода  плоского  слоя  для  измерения  теплопроводности

материалов.

Описание экспериментальной установки

Используемая в эксперименте установка (рис. 1) состоит из основания (1) монтажными стойками (2), удерживающими прижимной механизм (6, 11) охладителя (8, 9). Нагреватель (4), установленный на пенопластовой основе (3) подключается к автоматическому трансформатору (13). К нагревателю сверху плотно прижимается испытуемый образец (5) диаметром 120 мм и толщиной 25 мм. Вся система смонтирована в корпусе с полыми стенками заполненными вакуумом (8). Термопара Т1 закреплена на корпусе нагревателя снизу, Т2 – сверху, Т3 – со стороны нагревателя у боковой стенки образца, Т4 – посередине с холодной стороны. Температуры Т1 и Т2 выводятся на измеритель ТРМ 200, расположенный слева (7) (Т1 – красный дисплей, Т2 – зеленый), а температуры Т3 и Т4 соответственно на измерителе справа (12) (Т3 –красный дисплей, Т4- зеленый). Напряжение на автотрансформаторе (ЛАТР) отображается на его стрелочном приборе, а также может фиксироваться мультиметром.

Рисунок 1 – Схема экспериментальной установки

  1.  основание, 2 – стойка монтажная, 3 – нижняя прослойка пенопласта, 4 - нагреватель, 5 – испытываемый образец, 6 – прижимные гайки, 7, 12 – измерители ТРМ 200, 8 – теплоизолирующий кожух, 9 – вентилятор, 10 – радиатор, прижимная пластина, 13 – ЛАТР, 14 – измеритель напряжения на выходе ЛАТРа.

Напряжение нагревателя регулируется автотрансформатором, ограниченным диапазоном регулирования до 25 В. В процессе регулирование к клеммам «выход» подключается мультиметр для более точной фиксации напряжения подаваемого на нагреватель. Сигналы с термопар в режиме реального времени отображаются на измерителях ТРМ 200.

 

Обработка результатов

  1.  Коэффициент формы образца      , (м-1)

где  F – площадь поверхности образца, , м2;

 - толщина образца, м.

  1.  Тепловой поток от нагревателя     , Вт

где  U – напряжение, подаваемое на нагреватель определяется по показаниям вольтметра, установленного в ЛАТР, В

 R – сопротивление нагревателя, R=30 Ом

  1.  Для каждого режима посчитать коэффициент теплопроводности:

,

где   - средние температуры поверхностей образца с горячей и холодной стороны соответственно, К;

Учитывая, что образец находится в термостатирующей оболочке, заполненной вакуумом, то радиальными потерями можно пренебречь.

Параметры процесса

№№

F, м2

Q, Вт

tг, К

tх, К

, К

, Вт/(м*К)

1

Выводы

Среднеквадратичная относительная погрешность:

.

PAGE  

PAGE  3


 

А также другие работы, которые могут Вас заинтересовать

84636. РЕГЕНЕРАТОРЫ ГАЗОТУРБИННЫХ УСТАНОВОК 7.06 MB
  Непременным условием создания любого теплового двигателя является наличие материальной среды – рабочего тела и, по меньшей мере, двух тепловых источников – источника высокой температуры (нагреватель), от которого получаем теплоту для преобразования части ее в работу...
84637. Социальное партнерство (социальный диалог) в охране труда 87.5 KB
  Социальное партнерство как принцип законодательного и нормативно правового обеспечения охраны труда. Социальное партнерство решает следующие вопросы: достижение консенсуса по вопросам обеспечения занятости; Создание дополнительных рабочих мест; Применение наемного труда с соблюдением...
84638. Анализ пассивов банка 43.69 KB
  Уставный фонд банка является основной составляющей собственных средств кредитной организации. Ему принадлежит наибольший удельный вес в собственном капитале. Поэтому важным направлением анализа собственного капитала банка является изучение уставного фонда.
84639. Основи місцевого самоврядування 84.5 KB
  Основи місцевого самоврядування Конституційно правові основи місцевого самоврядування в Україні. Матеріальна основа місцевого самоврядування. Фінансова основа місцевого самоврядування. Місцеві бюджети та позабюджетні кошти місцевого самоврядування.
84640. Сучасна система місцевого самоврядування в Україні та її елементи 145 KB
  Сучасна система місцевого самоврядування в Україні та її елементи Поняття і система місцевого самоврядування. Територіальна громада основний елемент системи місцевого самоврядування. Поняття та види органів місцевого самоврядування. Представницькі органи місцевого самоврядування сільські селищні міські ради.
84641. Основное и дополнительное сырье хлебопекарного производства, хранение тарное и бестарное. Виды и сорта муки. Значение химического состава муки в технологическом процессе 31.15 KB
  На всех этапах производственного процесса осуществляется сложный комплекс коллоидных, биохимических, микробиологических процессов, в результате которых мука превращается в хлеб - высококачественный продукт, обладающий вкусовыми свойствами и структурой, обеспечивающей его хорошую усвояемость.
84642. Хлебопекарные дрожжи, их микробиологическая и химическая характеристика. Виды хлебопекарных дрожжей, хранение и подготовка к производству. Сущность активации дрожжей 20.47 KB
  Дрожжи хлебопекарные являются основным видом сырья для производства хлеба и хлебобулочных изделий. Технологическая и функциональная роль дрожжей заключается в биологическом разрыхлении теста диоксидом углерода выделяющимся в процессе спиртового брожения придании тесту определённых реологических...
84643. Жидкие дрожжи и их технологическое значение, микрофлора. Разводочный и производственный циклы приготовления, основные схемы приготовления, их сравнительная оценка. Показатели качества жидких дрожжей 22.62 KB
  Показатели качества жидких дрожжей Понятие о жидких дрожжах и их технологическом значении Жидкие дрожжи используются в отечественном хлебопечении в качестве биологического разрыхлителя при производстве хлеба из пшеничной муки смеси пшеничной и ржаной полностью приготовленного на жидких дрожжах...
84644. Хлебопекарные свойства пшеничной муки и факторы, их характеризующие. Газообразующая способность пшеничной муки и факторы, ее обусловливающие 24.64 KB
  Хлебопекарные свойства пшеничной муки и факторы их характеризующие. Газообразующая способность пшеничной муки и факторы ее обусловливающие. Сила пшеничной муки и факторы ее определяющие. Технологическое значение силы муки.