16563

Магнитно-импульсная обработка металлов

Лабораторная работа

Производство и промышленные технологии

Лабораторная работа № 3 Магнитноимпульсная обработка металлов 1. Цель работы Ознакомление с принципом деформирования проводящих заготовок в импульсном магнитном поле с узлами и элементами установок для магнитноимпульсной обработки металлов а также ознако...

Русский

2013-06-22

82 KB

29 чел.

Лабораторная работа № 3

Магнитно-импульсная обработка металлов

1. Цель работы

Ознакомление с принципом деформирования проводящих заготовок в импульсном магнитном поле, с узлами и элементами установок для магнитно-импульсной обработки металлов, а также ознакомление с методами расчетов процессов в разрядной цепи установки.

2. Предварительные сведения

Магнитно-импульсная обработка основана на преобразовании электрической энергии, накопленной в конденсаторной батарее, при разряде на индуктор или непосредственно на заготовку в энергию импульсного магнитного поля, совершающего работу деформирования электропроводной заготовки.

Известно, что на единицу длины проводника с током , помещенном в магнитное поле с напряженностью , действует сила

,

(3.1)

где Гн/м - магнитная постоянная; μ - магнитная проницаемость окружающей среды.

Магнитное поле, воздействующее на проводник с током, может быть создано током, протекающем в другом проводнике. Величина напряженности магнитного поля в пространстве вокруг проводника с током может быть определена из закона полного тока

,

(3.2)

где l - контур интегрирования.

На расстоянии r от уединенного проводника

,

(3.3)

В случае двух бесконечно тонких прямых проводников, расположенных на расстоянии Δr друг от друга, электродинамическая сила, действующая на единице длины проводников,

,

(3.4)

Направление силы зависит от направления токов и в проводниках: при одинаково направленных токах проводники притягиваются друг к другу, при противоположно направленных - отталкиваются.

Для двух бесконечно тонких плоских шин шириной a, расположенных на небольшом расстоянии (Δr << a) друг от друга, напряженность магнитного поля в объеме между шинами без учета краевых эффектов

,

(3.5)

Давление магнитного поля на шины числено равно удельной плотности энергии поля

,

(3.6)

Из-за влияния эффекта близости и поверхностного эффекта ток по сечению шин распределяется неравномерно. Поэтому при распределения силы или давления по толщине обрабатываемой заготовки и для определения индуктивности системы следует использовать не геометрическое расстояние Δr, а некоторое эквивалентное расстояние

,

(3.7)

где - глубина проникновения электромагнитного поля в материал шин; r - удельное сопротивление материала шин; w - круговая частота тока.

Известно, что в проводящем теле, расположенном вблизи проводника с переменным током, возникают вихревые токи. Взаимодействие тока в проводнике с наведенным в теле (заготовке) током сопровождается появлением отталкивающей силы

,

(3.8)

где - изменение индуктивности системы проводник-заготовка в направлении x.

Среднее давление на проводник и заготовку равно силе F, деленной на площадь проводника S.

Величина давления на заготовку толщиной δ может быть определена по формуле (3.6), если электромагнитное поле не проникает сквозь заготовку (Δ << δ). В случае проникновения поля (Δ ≈ δ) давление определяется разностью удельных плотностей энергии на поверхностях заготовки

,

(3.9)

В установках для магнитно-импульсной обработки используются два способа получения давления электромагнитного поля на заготовку. При первом способе импульсный ток


Рис. 3.1 Рабочие органы установок для
магнитно - импульсной обработки.

пропускается по заготовке 3 (рис. 3.1,а). При втором способе в заготовке наводятся вихревые токи под действием импульсного магнитного поля, возникающего вокруг проводника или системы проводников (индуктора И), через который пропускается импульсный ток (рис. 3.1,б). Для придания заготовке требуемой формы на пути ее перемещения устанавливается матрица М.

При первом способе по заданным электрофизическим свойствам заготовки и требуемой величине давления можно по (3.6) определить параметры тока, необходимые для деформирования заготовки. Таким же образам можно решить и обратную задачу.

При втором способе: если известен закон изменения индуктивности системы индуктор-заготовка от радиуса заготовки, для определения силы можно воспользоваться формулой (3.8).

Энергия импульсного электромагнитного поля при осуществлении деформации заготовки расходуется не только на выполнение механической работы, но также на нагрев проводников, изменение их внутренней структуры и т.д. Точный учет этих процессов является сложной задачей, выходящей за рамки данной работы.

В установках для магнитно-импульсной обработки металлов в зависимости от формы и размеров заготовки и от характера проводимой операции используются различные индукторные системы. По конструктивному выполнению их можно разделить на следующие типы: одновитковые, спиральные, коаксиальные, петлевые, конические и с концентраторами магнитного потока. Для изготовления индукторов применяются хорошо проводящие электрический ток механически прочные металлы и их сплавы. Изоляционные материалы в индукторе выполняют две основные функции: обеспечение электрической прочности промежутков между витками и между индуктором и заготовкой, корпусом установки, а также обеспечение механического крепления витков индуктора.

Требования, предъявляемые к индукторам, следующие:

- высокий коэффициент преобразования энергии источника питания в работу деформации заготовки;
- высокая механическая стойкость к воздействию динамических усилий, возникающих в процессе деформации заготовки;
- обеспечение необходимого распределения или концентрации магнитного поля на заданном участке обрабатываемой заготовки;
- обеспечение электрической прочности изоляции;
- удобное и надежное присоединение к источнику питания.

Источник питания магнитно-импульсной установки должен обеспечить необходимую величину и скорость изменения тока в индукторе с заготовкой. Для осуществления деформации металлических заготовок требуется получать большую плотность тока в заготовке. Из известных в настоящее время источников импульсных токов наиболее подходящими для магнитно-импульсных установок являются генераторы с емкостным накопителем энергии. Величина запасаемой энергии, рабочее напряжение накопителя и параметры элементов разрядного контура определяются требуемыми величиной и скоростью изменения тока. В существующих установках для магнитно-импульсной обработки металлов рабочее напряжение составляет 1 - 50 кВ, запасаемая энергия изменяется от 0,1 до 300 кДж. Для обработки таких материалов, как золото, серебро, медь, алюминий и их сплавы эффективно используются установки с частотой колебаний разрядного тока 10 - 20 кГц. Для обработки материалов с низкой электропроводностью (нержавеющая сталь, титановые сплавы и др.) необходимо использовать установки с высокой рабочей частотой 60 - 100 кГц или "спутники" (промежуточные прокладки с высокой электропроводностью), размещаемые между индуктором и обрабатываемой заготовкой.

Магнитно-импульсный метод может быть использован для самых разнообразных видов обработки металлов давлением: вырубки отверстий, развальцовки, неглубокой штамповки, отбортовки, напрессовки, калибровки, сборки узлов, уплотнения и т.д. Он позволяет выполнять технологические операции, не осуществляемые другими методами (напрессовка металлических деталей на хрупкие изделия из стекла и керамики, обработка давлением деталей, заключенных в герметические оболочки из стекла или пластмасс, обработки сплавов, труднодеформируемых обычными способами). Возможность точного дозирования энергии, запасаемой в емкостном накопителе, позволяет получать детали с большой точностью повторения их формы.

В тех случаях, когда магнитно-импульсная обработка осуществляется за счет взаимодействия тока в индукторе и наведенного тока в деформируемой заготовке, необходимо, чтобы конструкция заготовки обеспечивала непрерывность пути наведенного тока (отсутствовали прорези или большие отверстия).

3. Описание установки

Работа выполняется на стенде, принципиальная электрическая схема которого приведена на рис. 3.2.


Рис. 3.2 Электрическая схема лабораторного стенда

Стенд состоит из следующих элементов: система индуктор-заготовка 3, коммутатор 2, емкостной накопитель энергии 6, зарядное устройство 5, блок поджигающих импульсов 1 и пульт управления 4. Питание установки осуществляется от сети переменного тока напряжением 220 В через предохранители ПР и пакетный выключатель П. Регулирование напряжения на первичной обмотке трансформатора Т осуществляется автотрансформатором АТ. Зарядка емкостного накопителя энергии осуществляется от вторичной обмотки Т через выпрямитель В и ограничивающие резисторы Rз и Rр. Включение коммутатора 2 осуществляется от блока 1 после нажатия кнопки K3. Сигнализация о наличии напряжения питания стенда, на первичной обмотке АТ и блока 1 осуществляется лампами Л1 и Л2 соответственно. Контроль напряжения на выходе АТ осуществляется по вольтметру V. Величина зарядного напряжения накопителя 6 определяется по прибору, проградуированному в киловольтах и включенному через делитель напряжения R1 - R2. Регистрация тока в разрядной цепи накопителя осуществляется при помощи шунта Rш. Аварийный разряд накопителя энергии и снятие остаточного напряжения после отключения установки производится включением короткозамыкателя К4 с электромагнитным приводом.

4. Задание на домашнюю подготовку

  1.  Изучить описание лабораторной работы, рекомендуемую литературу.
  2.  Рассчитать максимальное значение тока разряда магнитно-импульсной установки при следующих параметрах разрядной цепи: С= 300 мкФ; U= 4 кВ; индуктивность установки Lу= 0,05 мкГн; сопротивление Rу= 5 мОм.
  3.  Рассчитать глубину проникновения магнитного поля, изменяющегося по синусоидальному закону с ω = 3·105 с-1, в материал с ρ =1,7·10-8 Ом·м и расстоянии между ними Δr = 1 мм. Определить погонную индуктивность этой системы. Найти погонную dL/dx.
  4.  Определить электродинамическую силу взаимодействия двух проводников с током длиной 100 мм, шириной a= 40 мм при максимальном значении тока, вычисленном в п.2. Рассчитать давление магнитного поля в данной системе проводников (Δr << a).

5. Задание на проведение работы

  1.  1. Установить заготовку между клеммами а - б в разрядной цепи установки (рис. 3.2). При зарядном напряжении U= 4 кВ получить осциллограмму тока в разрядной цепи. Рассчитать индуктивность установки Lу.
  2.  Установить между клеммами а - б индуктор. Снять осциллограмму тока разряда. По осциллограмме с учетом результатов п.1 определить величину индуктивности индуктора.
  3.  Поместить в индуктор заготовку №1. По осциллограмме тока разряда определить индуктивность системы индуктор-заготовка №1.
  4.  Проделать такие же эксперименты с заготовками №2, №3, №4 и №5.
  5.  Построить зависимость индуктивности системы индуктор-заготовка, определенной в п.4, от величины радиуса заготовки.
  6.  Установить между клеммами а-б систему из двух проводников для магнитно-импульсной обработки с пропусканием тока по заготовке. Установить матрицу рядом с обрабатываемым проводником. При зарядном напряжении U= 4 кВ произвести деформирование заготовки. По осциллограмме тока определить величину тока и рассчитать давление магнитного поля на заготовку. Сравнить полученный результат с рассчитанным в п.5 предварительной подготовки.

6. Контрольные вопросы

  1.  Какие электрофизические явления используются в установках для магнитно-импульсной обработки материалов?
  2.  Как рассчитывается электродинамическая сила в системе проводников с токами?
  3.  Чем определяется глубина проникновения электромагнитного поля в материал?
  4.  Как определяется давление импульсного магнитного поля на проводящую преграду?
  5.  Чем определяются требования к параметрам магнитно- импульсных установок?
  6.  Как рассчитывается механическая работа при перемещении проводников с током?

Литература

  1.  Авруцкий В.А., Будович В.Л., Киселев В.Я. и др. Накопители энергии и их применение. - М.: МЭИ, 1982. - с.12-18, 67-76, 78.
  2.  Электротехнический справочник. т.3, Кн.2, § 54.4 /Под ред. И.Н.Орлова и др. -М.: Энергоатомиздат, 1988. - с.238-243.


 

А также другие работы, которые могут Вас заинтересовать

43825. Исследование состояния малого предпринимательства и финансового состояния ИП «Шарипова А.Г. 1.03 MB
  С переходом экономики Российской Федерации на рыночные отношения, а в связи с этим и началом развития малого бизнеса, в научную литературу и официальные документы прочно стали входить такие понятия как «малый бизнес», «малые предприятия», «предприниматели малого бизнеса», «предпринимательство и малый бизнес» и другие. К сожалению, многие эти понятия не унифицированы и поэтому в научной литературе они трактуются далеко не однозначно.
43826. Изучение государственного управления в сфере образования 67.7 KB
  Социально-экономическая характеристика образования в РФ 6 Состояние и развитие Российской системы образования Организация системы государственного управления в сфере образования Правовое регулирование образования в РФ
43827. Розрахунок електрозабезпечення приватного акціонерного товариства Комвольно суконна компанія Чексіл 551.57 KB
  Електромонтажні роботи в даний час ведуться на високому рівні інженерної підготовки, з максимальним перенесенням цих робіт із будівельних майданчиків в майстерні монтажно-заготовительних ділянок і на заводи електромонтажних організацій.
43828. Проектирование участка ТО – 2 легковых автомобилей 1.13 MB
  Предприятие неоднократно занимало призовые места в Областном и Республиканском соревнованиях и имело одни из самых высоких показателей по выработке на один таксомотор среди предприятий Министерства автомобильного транспорта России.
43829. ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ, СВЯЗАННЫЕ С РЕШЕНИЕМ ЭКОНОМИЧЕСКИХ, ОРГАНИЗАЦИОННО – УПРАВЛЕНЧЕСКИХ И УЧЕТНЫХ ЗАДАЧ НА ООО «Строй-Арсенал» 2.08 MB
  Создание российских интернетмагазинов началось в 1995 году. Интернетмагазином считается такой магазин на сайте которого существует возможность полностью завершить покупку и оплатить ее или выписать счет для оплаты в банке. Большинство же российских Интернетмагазинов представляют собой webвитрины и осуществляют торговлю на заказ через Интернет.
43830. Определение возможности получения гречневой крупы под воздействием инфракрасной обработки 532.66 KB
  Основные продукты переработки зерна используемые в питании крупы и мука. В зернах гречихи содержатся: легко усваиваемые белки до 16 в том числе незаменимые аминокислоты аргинин и лизин; углеводы до 30 и жиры – до 3; много минеральных веществ железо кальций фосфор медь цинк бор йод никель кобальт; клетчатка; яблочная лимонная щавелевая кислоты; витамины группы В РР и Р рутин.Область применения В России выращиваемую гречку используют в основном для производства различных круп: ядрицы представляющей собой целые...
43831. Определение путей повышения эффективности рекламной деятельности 8.13 MB
  Маркетинговая функция. Было бы ошибкой отождествлять маркетинговую функцию рекламы с функцией экономической, хотя они в чем-то и созвучны друг другу. Однако большинство авторитетных специалистов по части рекламы предпочитают говорить о маркетинговой функции рекламы как вполне самостоятельной.
43832. ПРОЕКТУВАННЯ, МОНТАЖ СИГНАЛІ3АЦІЇ НАВЧАЛЬНИХ МАЙСТЕРЕНЬ ТЕХНІКУМУ 159.28 KB
  Охоронна сигналізація Автономна сигналізація Технічні системи охорони Механічні засоби захисту та охорони Датчики руху Системи безпеки. Сигнагналізація Системи охорони периметру Системи передачі інформації по мережі GSM Телефони охоронної сигналізації Засоби передачі звістки Типи периметральних систем Можливості та типологія датчиків охоронної сигналізації Різноманітність охоронних звісників та їх функціональні особливості Графічна частина Аркуш 1 – План електромонтажного цеха і аудиторії...
43833. Повышение эффективности процесса управления физической культурой и спортом на муниципальном уровне 320 KB
  Практика применения Федерального закона «О физической культуре и спорте в Российской Федерации» выявила его излишнюю декларативность, существенные недостатки и пробелы в числе норм регулирующих правоотношения в сфере физической культуры и спорта, противоречия с иными актами высшей юридической силы.