16563

Магнитно-импульсная обработка металлов

Лабораторная работа

Производство и промышленные технологии

Лабораторная работа № 3 Магнитноимпульсная обработка металлов 1. Цель работы Ознакомление с принципом деформирования проводящих заготовок в импульсном магнитном поле с узлами и элементами установок для магнитноимпульсной обработки металлов а также ознако...

Русский

2013-06-22

82 KB

29 чел.

Лабораторная работа № 3

Магнитно-импульсная обработка металлов

1. Цель работы

Ознакомление с принципом деформирования проводящих заготовок в импульсном магнитном поле, с узлами и элементами установок для магнитно-импульсной обработки металлов, а также ознакомление с методами расчетов процессов в разрядной цепи установки.

2. Предварительные сведения

Магнитно-импульсная обработка основана на преобразовании электрической энергии, накопленной в конденсаторной батарее, при разряде на индуктор или непосредственно на заготовку в энергию импульсного магнитного поля, совершающего работу деформирования электропроводной заготовки.

Известно, что на единицу длины проводника с током , помещенном в магнитное поле с напряженностью , действует сила

,

(3.1)

где Гн/м - магнитная постоянная; μ - магнитная проницаемость окружающей среды.

Магнитное поле, воздействующее на проводник с током, может быть создано током, протекающем в другом проводнике. Величина напряженности магнитного поля в пространстве вокруг проводника с током может быть определена из закона полного тока

,

(3.2)

где l - контур интегрирования.

На расстоянии r от уединенного проводника

,

(3.3)

В случае двух бесконечно тонких прямых проводников, расположенных на расстоянии Δr друг от друга, электродинамическая сила, действующая на единице длины проводников,

,

(3.4)

Направление силы зависит от направления токов и в проводниках: при одинаково направленных токах проводники притягиваются друг к другу, при противоположно направленных - отталкиваются.

Для двух бесконечно тонких плоских шин шириной a, расположенных на небольшом расстоянии (Δr << a) друг от друга, напряженность магнитного поля в объеме между шинами без учета краевых эффектов

,

(3.5)

Давление магнитного поля на шины числено равно удельной плотности энергии поля

,

(3.6)

Из-за влияния эффекта близости и поверхностного эффекта ток по сечению шин распределяется неравномерно. Поэтому при распределения силы или давления по толщине обрабатываемой заготовки и для определения индуктивности системы следует использовать не геометрическое расстояние Δr, а некоторое эквивалентное расстояние

,

(3.7)

где - глубина проникновения электромагнитного поля в материал шин; r - удельное сопротивление материала шин; w - круговая частота тока.

Известно, что в проводящем теле, расположенном вблизи проводника с переменным током, возникают вихревые токи. Взаимодействие тока в проводнике с наведенным в теле (заготовке) током сопровождается появлением отталкивающей силы

,

(3.8)

где - изменение индуктивности системы проводник-заготовка в направлении x.

Среднее давление на проводник и заготовку равно силе F, деленной на площадь проводника S.

Величина давления на заготовку толщиной δ может быть определена по формуле (3.6), если электромагнитное поле не проникает сквозь заготовку (Δ << δ). В случае проникновения поля (Δ ≈ δ) давление определяется разностью удельных плотностей энергии на поверхностях заготовки

,

(3.9)

В установках для магнитно-импульсной обработки используются два способа получения давления электромагнитного поля на заготовку. При первом способе импульсный ток


Рис. 3.1 Рабочие органы установок для
магнитно - импульсной обработки.

пропускается по заготовке 3 (рис. 3.1,а). При втором способе в заготовке наводятся вихревые токи под действием импульсного магнитного поля, возникающего вокруг проводника или системы проводников (индуктора И), через который пропускается импульсный ток (рис. 3.1,б). Для придания заготовке требуемой формы на пути ее перемещения устанавливается матрица М.

При первом способе по заданным электрофизическим свойствам заготовки и требуемой величине давления можно по (3.6) определить параметры тока, необходимые для деформирования заготовки. Таким же образам можно решить и обратную задачу.

При втором способе: если известен закон изменения индуктивности системы индуктор-заготовка от радиуса заготовки, для определения силы можно воспользоваться формулой (3.8).

Энергия импульсного электромагнитного поля при осуществлении деформации заготовки расходуется не только на выполнение механической работы, но также на нагрев проводников, изменение их внутренней структуры и т.д. Точный учет этих процессов является сложной задачей, выходящей за рамки данной работы.

В установках для магнитно-импульсной обработки металлов в зависимости от формы и размеров заготовки и от характера проводимой операции используются различные индукторные системы. По конструктивному выполнению их можно разделить на следующие типы: одновитковые, спиральные, коаксиальные, петлевые, конические и с концентраторами магнитного потока. Для изготовления индукторов применяются хорошо проводящие электрический ток механически прочные металлы и их сплавы. Изоляционные материалы в индукторе выполняют две основные функции: обеспечение электрической прочности промежутков между витками и между индуктором и заготовкой, корпусом установки, а также обеспечение механического крепления витков индуктора.

Требования, предъявляемые к индукторам, следующие:

- высокий коэффициент преобразования энергии источника питания в работу деформации заготовки;
- высокая механическая стойкость к воздействию динамических усилий, возникающих в процессе деформации заготовки;
- обеспечение необходимого распределения или концентрации магнитного поля на заданном участке обрабатываемой заготовки;
- обеспечение электрической прочности изоляции;
- удобное и надежное присоединение к источнику питания.

Источник питания магнитно-импульсной установки должен обеспечить необходимую величину и скорость изменения тока в индукторе с заготовкой. Для осуществления деформации металлических заготовок требуется получать большую плотность тока в заготовке. Из известных в настоящее время источников импульсных токов наиболее подходящими для магнитно-импульсных установок являются генераторы с емкостным накопителем энергии. Величина запасаемой энергии, рабочее напряжение накопителя и параметры элементов разрядного контура определяются требуемыми величиной и скоростью изменения тока. В существующих установках для магнитно-импульсной обработки металлов рабочее напряжение составляет 1 - 50 кВ, запасаемая энергия изменяется от 0,1 до 300 кДж. Для обработки таких материалов, как золото, серебро, медь, алюминий и их сплавы эффективно используются установки с частотой колебаний разрядного тока 10 - 20 кГц. Для обработки материалов с низкой электропроводностью (нержавеющая сталь, титановые сплавы и др.) необходимо использовать установки с высокой рабочей частотой 60 - 100 кГц или "спутники" (промежуточные прокладки с высокой электропроводностью), размещаемые между индуктором и обрабатываемой заготовкой.

Магнитно-импульсный метод может быть использован для самых разнообразных видов обработки металлов давлением: вырубки отверстий, развальцовки, неглубокой штамповки, отбортовки, напрессовки, калибровки, сборки узлов, уплотнения и т.д. Он позволяет выполнять технологические операции, не осуществляемые другими методами (напрессовка металлических деталей на хрупкие изделия из стекла и керамики, обработка давлением деталей, заключенных в герметические оболочки из стекла или пластмасс, обработки сплавов, труднодеформируемых обычными способами). Возможность точного дозирования энергии, запасаемой в емкостном накопителе, позволяет получать детали с большой точностью повторения их формы.

В тех случаях, когда магнитно-импульсная обработка осуществляется за счет взаимодействия тока в индукторе и наведенного тока в деформируемой заготовке, необходимо, чтобы конструкция заготовки обеспечивала непрерывность пути наведенного тока (отсутствовали прорези или большие отверстия).

3. Описание установки

Работа выполняется на стенде, принципиальная электрическая схема которого приведена на рис. 3.2.


Рис. 3.2 Электрическая схема лабораторного стенда

Стенд состоит из следующих элементов: система индуктор-заготовка 3, коммутатор 2, емкостной накопитель энергии 6, зарядное устройство 5, блок поджигающих импульсов 1 и пульт управления 4. Питание установки осуществляется от сети переменного тока напряжением 220 В через предохранители ПР и пакетный выключатель П. Регулирование напряжения на первичной обмотке трансформатора Т осуществляется автотрансформатором АТ. Зарядка емкостного накопителя энергии осуществляется от вторичной обмотки Т через выпрямитель В и ограничивающие резисторы Rз и Rр. Включение коммутатора 2 осуществляется от блока 1 после нажатия кнопки K3. Сигнализация о наличии напряжения питания стенда, на первичной обмотке АТ и блока 1 осуществляется лампами Л1 и Л2 соответственно. Контроль напряжения на выходе АТ осуществляется по вольтметру V. Величина зарядного напряжения накопителя 6 определяется по прибору, проградуированному в киловольтах и включенному через делитель напряжения R1 - R2. Регистрация тока в разрядной цепи накопителя осуществляется при помощи шунта Rш. Аварийный разряд накопителя энергии и снятие остаточного напряжения после отключения установки производится включением короткозамыкателя К4 с электромагнитным приводом.

4. Задание на домашнюю подготовку

  1.  Изучить описание лабораторной работы, рекомендуемую литературу.
  2.  Рассчитать максимальное значение тока разряда магнитно-импульсной установки при следующих параметрах разрядной цепи: С= 300 мкФ; U= 4 кВ; индуктивность установки Lу= 0,05 мкГн; сопротивление Rу= 5 мОм.
  3.  Рассчитать глубину проникновения магнитного поля, изменяющегося по синусоидальному закону с ω = 3·105 с-1, в материал с ρ =1,7·10-8 Ом·м и расстоянии между ними Δr = 1 мм. Определить погонную индуктивность этой системы. Найти погонную dL/dx.
  4.  Определить электродинамическую силу взаимодействия двух проводников с током длиной 100 мм, шириной a= 40 мм при максимальном значении тока, вычисленном в п.2. Рассчитать давление магнитного поля в данной системе проводников (Δr << a).

5. Задание на проведение работы

  1.  1. Установить заготовку между клеммами а - б в разрядной цепи установки (рис. 3.2). При зарядном напряжении U= 4 кВ получить осциллограмму тока в разрядной цепи. Рассчитать индуктивность установки Lу.
  2.  Установить между клеммами а - б индуктор. Снять осциллограмму тока разряда. По осциллограмме с учетом результатов п.1 определить величину индуктивности индуктора.
  3.  Поместить в индуктор заготовку №1. По осциллограмме тока разряда определить индуктивность системы индуктор-заготовка №1.
  4.  Проделать такие же эксперименты с заготовками №2, №3, №4 и №5.
  5.  Построить зависимость индуктивности системы индуктор-заготовка, определенной в п.4, от величины радиуса заготовки.
  6.  Установить между клеммами а-б систему из двух проводников для магнитно-импульсной обработки с пропусканием тока по заготовке. Установить матрицу рядом с обрабатываемым проводником. При зарядном напряжении U= 4 кВ произвести деформирование заготовки. По осциллограмме тока определить величину тока и рассчитать давление магнитного поля на заготовку. Сравнить полученный результат с рассчитанным в п.5 предварительной подготовки.

6. Контрольные вопросы

  1.  Какие электрофизические явления используются в установках для магнитно-импульсной обработки материалов?
  2.  Как рассчитывается электродинамическая сила в системе проводников с токами?
  3.  Чем определяется глубина проникновения электромагнитного поля в материал?
  4.  Как определяется давление импульсного магнитного поля на проводящую преграду?
  5.  Чем определяются требования к параметрам магнитно- импульсных установок?
  6.  Как рассчитывается механическая работа при перемещении проводников с током?

Литература

  1.  Авруцкий В.А., Будович В.Л., Киселев В.Я. и др. Накопители энергии и их применение. - М.: МЭИ, 1982. - с.12-18, 67-76, 78.
  2.  Электротехнический справочник. т.3, Кн.2, § 54.4 /Под ред. И.Н.Орлова и др. -М.: Энергоатомиздат, 1988. - с.238-243.


 

А также другие работы, которые могут Вас заинтересовать

75109. Functional Stylistics 238 KB
  The subject of stylistics has so far not been definitely outlined. This is due to a number of reasons. First of all there is confusion between the terms style and stylistics. The first concept is so broad that it is hardly possible to regard it as a term.
75110. Лидерство и власть. Управление поведением: подкрепление, наказание, гашение 19.12 KB
  Лидерство и власть. Власть означает способность возможность влиять на поведение других людей людей с целью подчинить их своей воле. Власть позволяет руководителю распоряжаться действиями подчиненных направлять их в русло интересов организации побуждать сотрудников и более эффективной работе предотвращать возникающие в коллективе конфликты. Определение власти как организационного процесса подразумевает следующее: Власть существует у того кто может ее использовать потенциально т.
75111. Цели и миссии организации 14.55 KB
  В условиях административного управления цели организации во многом задавались вышестоящими уровнями управления например по управлению объёмами производства затратами: в виде заданий по снижению себестоимости товарной продукции и др. Цели это: желаемый будущий результат будущее состояние объекта модель желаемого будущего которые стремится достичь организация и на достижение которых направлена её деятельность в ближайшей перспективе; некоторая область значений отдельных характеристик организации в пространстве возможных состояний...
75112. Конкурентная стратегия 15.62 KB
  Конкурентная стратегия организации нацелена на достижение конкурентных преимуществ рис. Стратегия лидерства по издержкам низких издержек производство продукции сравнимого товара с минимальными издержками с затратами меньшими чем у конкурентов при осуществлении ценовой конкуренции. Конкурентные базовые стратегии Стратегия наиболее успешна если: на рынке доминирует ценовая конкуренция покупателей много конкурентная борьба на рынке идет в основном вокруг цены; производимый товар стандартен недифференцирован его использование...
75114. Основные части и движущие силы организации 59.28 KB
  В стратегическую вершину входят все управляющие звенья компании. Основная цель управление стратегией и развитием компании управление границами компании. Производственное ядро профессионалы цеха люди выполняющие основную деятельность по профилю компании...
75115. Традиционные модели организационных структур: звёздчатая, линейно-функциональная, дивизиональная, холдинговая, ТНК 2.46 MB
  Под организационной структурой управления понимается совокупность подразделений и уровней управления обеспечивающих развитие компании и ее конкурентоспособность. Оргструктура имеет определенные элементы: структурные подразделения выполняющие определенные функции управления; уровни управления как совокупность подразделений и руководителей занимающих определенную иерархическую ступень; горизонтальные и вертикальные связи обеспечивающие взаимодействие всех подразделений и руководителей; полномочия право руководителей использовать...
75116. Стратегические партнёрства. Управление проектами 46.52 KB
  Управление проектами. Управление проектами заключается в осуществлении и доведении проекта до логического завершения путем организации и управления людьми временем издержками и ресурсами. Функциональная структура управления проектами включает в себя девять разделов: Управление координацией Project Integrtion Mngement. Управление целями Project Scope Mngement.
75117. Бизнес-планирование. Содержание и цель бизнес-плана 21.64 KB
  Бизнес-план краткое точное доступное и понятное описание предполагаемого бизнеса важнейший инструмент при рассмотрении большого количества различных ситуаций позволяющий выбрать наиболее перспективный желаемый результат и определить средства для его достижения. Бизнес-план является документом позволяющим управлять бизнесом поэтому его можно представить как неотъемлемый элемент стратегического планирования и как руководство для исполнения и контроля.