16574

Исследование работы нейтрализаторов статического электричества

Лабораторная работа

Производство и промышленные технологии

Лабораторная работа № 7 €œИсследование работы нейтрализаторов статического электричества € 1. Цель работы. Экспериментальное определение эффективности работы пассивных индукционных и активных высоковольтных нейтрализаторов статического электричества...

Русский

2013-06-22

69.5 KB

3 чел.

Лабораторная работа  № 7

“Исследование работы нейтрализаторов

статического электричества ”

1. Цель работы.

Экспериментальное определение эффективности работы пассивных (индукционных) и активных (высоковольтных) нейтрализаторов статического электричества.

2. Описание установки.

 

Основным элементом лабораторного стенда (рис.1) по исследованию эффективности работы нейтрализаторов является диэлектрический диск из оргстекла 1, приводимый в движение двигателем постоянного тока 2. Над поверхностью диска расположен коронирующий электрод 3 для зарядки диэлектрического диска, разрядный электрод 4 нейтрализатора статического электричества и два датчика для измерения электрического поля 5. Под коронирующим электродом расположена заземленная плоскость 6.

Коронирующий электрод 3 подключен к источнику постоянного высокого напряжения 7 с регулируемым напряжением от 0 до 30 кВ, предназначен для зарядки диска. При напряжении на коронирующем электроде выше начального возникает униполярный коронный разряд. Ионы под действием электрического поля, созданного между коронирующим электродом и заземленной плоскостью 6, двигаются в направлении к диэлектрическому диску и осаждаются на нем. Таким образом, при вращении диска происходит осаждение зарядов на всей его поверхности. Знак осаждаемых зарядов может быть положительным или отрицательным.

Для регистрации заряда на диэлектрическом диске используются датчики для измерения электрического поля 8, принцип работы которых основан на явлении электростатической индукции. Конструктивно датчик выполнен следующим образом: над неподвижными измерительными электродами вращается заземленный экран в виде диска с секторными вырезами; при вращении экрана внешнее электрическое поле формирует на омическом сопротивлении измерительной цепи сигнал, пропорциональный напряженности электрического поля. Сигнал с датчика передается на осцилограф. Перед проведением экспериментов измерительная система и датчик градуируются в электрическом поле плоского конденсатора. По величине напряженности электрического поля E определяется поверхностная плотность заряда:

= oE

Для нейтрализации зарядов статического электричества используются индукционные и высоковольтные нейтрализаторы.

Индукционные нейтрализаторы наиболее просты. Они обычно выполнены в виде ряда заземленных игл или заземленного протяженного электрода в виде тонкой проволочки. Принцип действия индукционного нейтрализатора следующий. При приближении электрода нейтрализатора к наэлектризованному предмету  на поверхности иглы или проволочки резко возрастает электрическое поле и при достижении начального значения возникает коронный разряд, являющийся источником ионов обоих знаков. Под действием электрического поля, созданного зарядами статического электричества, ионы противоположного знака вытягиваются из чехла короны и двигаясь к поверхности, нейтрализуют ее.

Высоковольтный нейтрализатор включает в себя источник высокого напряжения (с регулировкой напряжения от 0 до 10 кВ) с переменной частотой от 50 до 1000 Гц и металлокерамический электрод, устойчивый к разрушительному действию поверхностных разрядов. Разрядный электрод состоит из диэлектрического барьера (керамики) по обе стороны которого расположены металлические индуктирующий и разрядный электроды. Высокое напряжение подается на индуктирующий электрод, а разрядный электрод заземлен. Высоковольтный индуктирующий электрод защищен от случайного прикосновения обслуживающего персонала, что делает нейтрализатор безопасном в эксплуатации. При подаче высокого потенциала на индуктирующий электрод на заземленном разрядном электроде возникает биполярный коронный разряд, имеющий как положительные, так и отрицательные ионы. При приближении разрядного электрода к заряженной поверхности под действием поля внешних зарядов из образовавшегося чехла короны вытягиваются ионы, которые под действием поля, созданного зарядами статического электричества, движутся к заряженной плоскости и нейтрализуют их. Знак вытягиваемых ионов будет всегда противоположен знаку зарядов, находящихся на заряженной плоскости.

3. Принцип работы лабораторного стенда.

Лабораторный стенд работает следующим образом. При подаче необходимого потенциала на коронирующий электрод 3 возникает коронный разряд. Под действием электрического поля ионы двигаясь к заземленной плоскости 6 осаждаются на диэлектрическом диске 1, заряжая его до определенной плотности заряда, которая может меняться за счет изменения напряжения питания коронирующего электрода. Диск, приводимый в движение двигателем 2, переносит заряд к разрядному электроду нейтрализатора, где происходит его нейтрализация. Для измерения электрического поля, созданного зарядами перед нейтрализатором и за ним установлены датчики. По информации от этих датчиков определяют поверхностную плотность заряда до и после нейтрализатора.

Рис.1 Принципиальная схема лабораторной установки.


Рис.2 Вольтамперная характеристика нейтрализатора.


4.Подготовка к работе.

    2.Расчитать по заданной ВАХ эффективность работы нейтрализатора статического электричества ,если напряженность поля на поверхности наэлектризованного материала равна 16кВ/см ,а потенциал при этом равен 16кВ скорость перемещения наэлектризованного материала 2м/с и 3.5м/c .


5. Рабочее задание.

 1. Ознакомиться с установкой по исследованию работы нейтрализаторов статического электричества.

2. Экспериментально определить в поле плоского конденсатора градуировочную кривую датчиков для измерения напряженности электрического поля.

3. Экспериментально определить и построить вольтамперные характеристики индукционных нейтрализаторов с разрядными элементами в виде ряда заземленных игл и протяженного электрода в виде тонкой заземленной проволочки. Определить эффективность работы нейтрализаторов при различной высоте установки разрядного элемента и заданной скорости перемещения наэлектризованного диска. Построить рассчитанные зависимости.

4. Экспериментально определить и построить вольт-амперные характеристики активного нейтрализатора с металло-керамическими электродами при различной высоте установки над наэлектризованной поверхностью. Рассчитать и построить зависимости эффективности работы нейтрализатора от высоты установки разрядного электрода. Все зависимости определить при частоте напряжения питания нейтрализатора 50 и 1000 Гц.


8

7

3

6

1

2

5

I

V

jнач

jнейтр

jост

4

3

5

5

4.0          8.0        12.0       16.0       кВ

Uпл

мкА/м

   30.0

    20.0

    10.0

        0

jнейтр


 

А также другие работы, которые могут Вас заинтересовать

30756. Сущность зимнего бетонирования. Модуль поверхности конструкций, его влияние на выбор метода бетонирования. Понятие критической прочности 17.93 KB
  Продолжительность твердения и конечные свойства бетона в значительной степени зависят от температурного режима и состава бетона в том числе от вида цемента. Для твердения бетона наиболее благоприятной температурой является 1528гр. Кроме того вода образует вокруг крупного заполнителя обволакивающую ледяную пленку которая при оттаивании нарушает сцепление монолитность бетона. При раннем замораживании по тем же причинам резко снижается сцепление бетона с арматурой увеличивается пористость что влечёт за собой снижение прочности...
30757. Классификация методов зимнего бетонирования. Выбор метода зимнего бетонирования 16.24 KB
  Беспрогревные основаны на сохранении начального тепла введённого в бетонную смесь при изготовлении тепла выделяющегося в результате гидратации цемента экзотермия а также тепла введённого в бетонную смесь до укладки в опалубку: термос предварительный электроразогрев бетонной смеси использование хим. Термос основан на использовании тепла введённого в бетон до укладки его в опалубочную форму в момент приготовления на РБУ растворобетонный узел и тепла выделяемого цементом в процессе твердения бетона. Mn 3 термос до 15...
30758. Сущность метода термоса. График температурного режима 15.31 KB
  Термос основан на использовании тепла введённого в бетон до укладки его в опалубочную форму в момент приготовления на РБУ растворобетонный узел и тепла выделяемого цементом в процессе твердения бетона. модуль поверхности^2 tв Температура бетоной смеси поступающей на объёкт и температура после укладки рассчитываются согласно эмпирическим зависимостям.
30759. Сущность метода предварительного электроразогрева бетонной смеси. График 15 KB
  Сущность метода предварительного электроразогрева бетонной смеси. Предварительный электроразогрев основан на кратковременном электроразогреве бетонной смеси от 05градусов до 7090 градусов в специальных установках бункер кузов опалубка от сети 380 В. Назначаем температуру приготовления бетонной смеси. Если прочность ниже требуемой повышаем температуру разогрева бетонной смеси.
30760. Прогревные методы зимнего бетонирования. Режимы электропрогрева. Область применения 18.23 KB
  Подведение электрической энергии к бетону: Пластинчатые электроды 2фазы Полосовые электроды 2 фазы сквозной прогрев 3 фазы периферийный прогрев Стержневые электроды 3 фазы в виде плоских групп3 фазы одиночные стержневые Струнные 2 фазы по периметру.
30761. Анализ доходов организации, направления его совершенствования 396 KB
  Рыночная экономика определяет конкретные требования к системе управления организациями. Необходимо более быстрое реагирование на изменение хозяйственной ситуации с целью поддержания устойчивого финансового состояния и постоянного совершенствования продаваемого продукта в соответствии с изменением конъюнктуры рынка.
30762. Индукционный метод прогрева. Прогрев греющим проводом. Греющая опалубка 16.25 KB
  Прогревные основаны на введение тепла в бетон в процессе его твердения: электропрогрев электрод греющий провод индукция термоактивная опалубка воздухопрогрев инфракрасный тепляки паропрогрев. Сущность метода искусственного прогрева и нагрева заключается в повышении температуры уложенного бетона до максимально допустимой и поддержании её в течении времени за которое бетон набирает критическую или заданную прочность. Искусственный прогрев и нагрев бетона применяют при бетонировании конструкции с модулем поверхности больше или...
30763. Бетонирование с использованием химических добавок 15.91 KB
  вва введённые в бетон ускоряют процесс твердения в начальный период выдерживания бетона. За счет ускорения твердения бетона можно снизить расход цемента пара увеличить оборачиваемость форм. Такие добавки как хлорид кальция хлориднитритнитрат кальция хлорид алюминия сульфат натрия при естественном твердении бетона при положительной температуре увеличивают скорость набора прочности в 34 раза что позволяет через 24 часа с момента окончания формования получать бетон с 5060 отпускной прочностью. Применение бетонов с противоморозными...
30764. Состав и структура комплексного процесса монтажа сборных конструкций 15.4 KB
  Монтаж совокупность технологических процессов связанных с доставкой конструктивных элементов установкой и закреплением. Процессы: Подготовительные: А доставка и складирование Б укрупнительная сборка В подготовка конструкции к монтажу Основные : А подготовка места установки Б строповка В подъём и установка в проектное положение Г временное закрепление Двыверка Е окончательное закрепление Методы монтажа техническое решение определяющее способ возведения конструкции и последующей сборки: По степени укрупнения: А поэлементный ...