16574

Исследование работы нейтрализаторов статического электричества

Лабораторная работа

Производство и промышленные технологии

Лабораторная работа № 7 Исследование работы нейтрализаторов статического электричества 1. Цель работы. Экспериментальное определение эффективности работы пассивных индукционных и активных высоковольтных нейтрализаторов статического электричества...

Русский

2013-06-22

69.5 KB

3 чел.

Лабораторная работа  № 7

“Исследование работы нейтрализаторов

статического электричества ”

1. Цель работы.

Экспериментальное определение эффективности работы пассивных (индукционных) и активных (высоковольтных) нейтрализаторов статического электричества.

2. Описание установки.

 

Основным элементом лабораторного стенда (рис.1) по исследованию эффективности работы нейтрализаторов является диэлектрический диск из оргстекла 1, приводимый в движение двигателем постоянного тока 2. Над поверхностью диска расположен коронирующий электрод 3 для зарядки диэлектрического диска, разрядный электрод 4 нейтрализатора статического электричества и два датчика для измерения электрического поля 5. Под коронирующим электродом расположена заземленная плоскость 6.

Коронирующий электрод 3 подключен к источнику постоянного высокого напряжения 7 с регулируемым напряжением от 0 до 30 кВ, предназначен для зарядки диска. При напряжении на коронирующем электроде выше начального возникает униполярный коронный разряд. Ионы под действием электрического поля, созданного между коронирующим электродом и заземленной плоскостью 6, двигаются в направлении к диэлектрическому диску и осаждаются на нем. Таким образом, при вращении диска происходит осаждение зарядов на всей его поверхности. Знак осаждаемых зарядов может быть положительным или отрицательным.

Для регистрации заряда на диэлектрическом диске используются датчики для измерения электрического поля 8, принцип работы которых основан на явлении электростатической индукции. Конструктивно датчик выполнен следующим образом: над неподвижными измерительными электродами вращается заземленный экран в виде диска с секторными вырезами; при вращении экрана внешнее электрическое поле формирует на омическом сопротивлении измерительной цепи сигнал, пропорциональный напряженности электрического поля. Сигнал с датчика передается на осцилограф. Перед проведением экспериментов измерительная система и датчик градуируются в электрическом поле плоского конденсатора. По величине напряженности электрического поля E определяется поверхностная плотность заряда:

= oE

Для нейтрализации зарядов статического электричества используются индукционные и высоковольтные нейтрализаторы.

Индукционные нейтрализаторы наиболее просты. Они обычно выполнены в виде ряда заземленных игл или заземленного протяженного электрода в виде тонкой проволочки. Принцип действия индукционного нейтрализатора следующий. При приближении электрода нейтрализатора к наэлектризованному предмету  на поверхности иглы или проволочки резко возрастает электрическое поле и при достижении начального значения возникает коронный разряд, являющийся источником ионов обоих знаков. Под действием электрического поля, созданного зарядами статического электричества, ионы противоположного знака вытягиваются из чехла короны и двигаясь к поверхности, нейтрализуют ее.

Высоковольтный нейтрализатор включает в себя источник высокого напряжения (с регулировкой напряжения от 0 до 10 кВ) с переменной частотой от 50 до 1000 Гц и металлокерамический электрод, устойчивый к разрушительному действию поверхностных разрядов. Разрядный электрод состоит из диэлектрического барьера (керамики) по обе стороны которого расположены металлические индуктирующий и разрядный электроды. Высокое напряжение подается на индуктирующий электрод, а разрядный электрод заземлен. Высоковольтный индуктирующий электрод защищен от случайного прикосновения обслуживающего персонала, что делает нейтрализатор безопасном в эксплуатации. При подаче высокого потенциала на индуктирующий электрод на заземленном разрядном электроде возникает биполярный коронный разряд, имеющий как положительные, так и отрицательные ионы. При приближении разрядного электрода к заряженной поверхности под действием поля внешних зарядов из образовавшегося чехла короны вытягиваются ионы, которые под действием поля, созданного зарядами статического электричества, движутся к заряженной плоскости и нейтрализуют их. Знак вытягиваемых ионов будет всегда противоположен знаку зарядов, находящихся на заряженной плоскости.

3. Принцип работы лабораторного стенда.

Лабораторный стенд работает следующим образом. При подаче необходимого потенциала на коронирующий электрод 3 возникает коронный разряд. Под действием электрического поля ионы двигаясь к заземленной плоскости 6 осаждаются на диэлектрическом диске 1, заряжая его до определенной плотности заряда, которая может меняться за счет изменения напряжения питания коронирующего электрода. Диск, приводимый в движение двигателем 2, переносит заряд к разрядному электроду нейтрализатора, где происходит его нейтрализация. Для измерения электрического поля, созданного зарядами перед нейтрализатором и за ним установлены датчики. По информации от этих датчиков определяют поверхностную плотность заряда до и после нейтрализатора.

Рис.1 Принципиальная схема лабораторной установки.


Рис.2 Вольтамперная характеристика нейтрализатора.


4.Подготовка к работе.

    2.Расчитать по заданной ВАХ эффективность работы нейтрализатора статического электричества ,если напряженность поля на поверхности наэлектризованного материала равна 16кВ/см ,а потенциал при этом равен 16кВ скорость перемещения наэлектризованного материала 2м/с и 3.5м/c .


5. Рабочее задание.

 1. Ознакомиться с установкой по исследованию работы нейтрализаторов статического электричества.

2. Экспериментально определить в поле плоского конденсатора градуировочную кривую датчиков для измерения напряженности электрического поля.

3. Экспериментально определить и построить вольтамперные характеристики индукционных нейтрализаторов с разрядными элементами в виде ряда заземленных игл и протяженного электрода в виде тонкой заземленной проволочки. Определить эффективность работы нейтрализаторов при различной высоте установки разрядного элемента и заданной скорости перемещения наэлектризованного диска. Построить рассчитанные зависимости.

4. Экспериментально определить и построить вольт-амперные характеристики активного нейтрализатора с металло-керамическими электродами при различной высоте установки над наэлектризованной поверхностью. Рассчитать и построить зависимости эффективности работы нейтрализатора от высоты установки разрядного электрода. Все зависимости определить при частоте напряжения питания нейтрализатора 50 и 1000 Гц.


8

7

3

6

1

2

5

I

V

jнач

jнейтр

jост

4

3

5

5

4.0          8.0        12.0       16.0       кВ

Uпл

мкА/м

   30.0

    20.0

    10.0

        0

jнейтр


 

А также другие работы, которые могут Вас заинтересовать

10976. Проверка качества уравнения регрессии 80.42 KB
  Проверка качества уравнения регрессии Оценим насколько хорошо модель линейной регрессии описывает данную систему наблюдений. В качестве этой оценки воспользуемся коэффициентом детерминации. Составим следующие суммы квадратов отклонений: фактических значений от...
10977. Множественная линейная регрессия 39.67 KB
  Множественная линейная регрессия Обобщением линейной регрессионной модели с двумя переменными является многомерная регрессионная модель или модель множественной регрессии. Уравнение множественной регрессии может быть представлено в виде где вектор независим
10978. Выполнение многомерного регрессионного анализа в пакете STATISTICA 198.06 KB
  Выполнение многомерного регрессионного анализа в пакете STATISTICA Рассмотрим пример построения регрессионной модели в пакете Statistica 6.0. Для этих целей обычно используется модуль Multiple Regressions Множественная регрессия который позволяет предсказать зависимую переменную по н...
10979. Нелинейная регрессия 192.4 KB
  Нелинейная регрессия Связь между признаком и может быть нелинейной например в виде полинома: Здесь степень полинома случайная составляющая Для имеющихся данных можно записать По аналогии с 14.4 в матричной форме получим: где . Таким образом получ...
10980. Факторный анализ. Задача однофакторного анализа 89.48 KB
  Факторный анализ Ранее была рассмотрена проверка значимости различия выборочных средних двух совокупностей. На практике часто возникает необходимость обобщения задачи т.е. проверки существенности различия выборочных средних совокупностей . Например требуется оцен
10981. Однофакторный дисперсионный анализ 136.3 KB
  Однофакторный дисперсионный анализ Для описания данных в большинстве случаев оказывается приемлема аддитивная модель. Она предполагает что значение отклика можно представить в виде суммы вклада воздействия фактора и независимой от вкладов факторов случайной велич...
10982. Однофакторный анализ в системе statistica 6.0 168.06 KB
  Однофакторный анализ в системе statistica 6.0 Рассмотрим типичную задачу однофакторного анализа реально возникшую на производстве. Пример.На заводе разработаны две новые технологии Т1 и Т2. Чтобы оценить как изменится дневная производительность при переходе на новые техн...
10983. Однофакторный анализ в системе statistica 6.0. Критерий Кронкхиера 257.69 KB
  ОДНОФАКТОРНЫЙ АНАЛИЗ В СИСТЕМЕ Statistica 6.0 Критерий Кронкхиера Если известно что имеющиеся группы результатов упорядочены по возрастанию убыванию влияния фактора то в таких случаях можно использовать статистику Джонкхиера более чувствительную более мощную против...
10984. Двухфакторный анализ 146.5 KB
  Двухфакторный анализ Бывает что в рамках однофакторной модели влияние интересующего нас фактора не проявляется хотя логические соображения указывают что такое влияние должно быть. Иногда это влияние проявляется но точность выводов о количественной оценке этого вли...