16584

Определение рН кислотных осадков

Лабораторная работа

Экология и защита окружающей среды

Лабораторная работа №2 Определение рН кислотных осадков Для охраны окружающей среды имеет большое значение решение проблемы кислотных осадков. Кислотными называются любые осадки дожди туманы снег кислотность которых выше нормальной. К ним также относят выпаден...

Русский

2013-06-22

173.5 KB

28 чел.

Лабораторная работа №2

Определение рН кислотных осадков

Для охраны окружающей среды имеет большое значение решение проблемы кислотных осадков.

Кислотными называются любые осадки - дожди, туманы, снег, -кислотность которых выше нормальной. К ним также относят выпадение из атмосферы сухих кислых частиц, более узко называемых кислотными отложениями.

Кислотные осадки обусловлены присутствием серной (Н2SО4) и азотной (НNОз) кислот. Обычно кислотность на две трети состоит из первой и на одну треть из второй, но во многом их соотношение определяется особенностями антропогенного загрязнения атмосферы в конкретном регионе. Присутствие в этих формулах серы и азота указывает на то, что проблема связана с выбросами данных элементов в воздух.

Загрязнение атмосферы соединениями серы. Соединения серы попадают в атмосферу, как естественным путем, так и в результате антропогенной деятельности (табл.1). При отсутствии источников загрязнения диоксид серы (SO2) встречается в атмосфере в виде ничтожных следов. Единственным крупным естественным источником диоксида серы является вулканическая деятельность. В основном SO2 поступает в атмосферу в результате человеческой деятельности. Главная причина загрязнения им атмосферы - сжигание ископаемого топлива, которое содержит серу. В процессе горения часть серы окисляется до SO2. Среди используемых видов топлива первое место  по поставке диоксида серы занимает каменный уголь, второе - нефть, а природный газ находится на третьем месте. Наиболее распространенными соединениями серы, поступающими в атмосферу, являются диоксид серы (SO2),сульфиты (S04), сероуглерод (CS2) и сероводород (Н2S). 

Таблица 1 Природные и антропогенные источники загрязнений атмосферы соединениями серы

Источники

Количество выбросов в год

млн т.

%

Природные

Процессы разрушения биосферы

Вулканическая деятельность

Поверхность океанов 

30-40

2

30 - 200 60-70

29-39

2

59-69

Антропогенные 

В результате антропогенной деятельности в атмосферу попадают значительные количества серы, главным образом в виде ее диоксида. Среди источников этих соединений на первом месте стоит уголь, сжигаемый в зданиях и на электростанциях, который дает 70% антропогенных выбросов.

Содержание серы в угле достаточно велико. В процессе горения сера превращается в сернистый газ, а часть серы остается в золе в твердом состоянии.

Содержание серы в различных видах ископаемого топлива приведены в табл.2.

Таблица 2. Содержание серы в различных видах топлива

Вид топлива 

Содержание серы,% 

Лигнин

1,1-1,6

Северный бурый уголь 

2,8 -3,3

Каменный уголь 

1,4 

Нефть и нефтепродукты 

0.1 -3.7 

Основными источниками образования SO2 является также металлургическая промышленность (переработка сульфидных руд меди, свинца и цинка), а также предприятия по производству серной кислоты и переработке нефти.

Основной вред окружающей среде наносит не столько сам диоксид серы, сколько продукт его окисления - S03. Процесс окисления осуществляется под действием кислорода на пылеобразных частицах оксидов металлов в качестве катализаторов, в атмосферной влаге или под действием солнечного света.

Газообразный SОз растворяется в капельках влаги с образованием серной кислоты:

SОз(газ) +Н20(ж) = Н2S04(водн)

Загрязнение атмосферы соединениями азота. Оксиды азота образуются в атмосфере  как естественным, так и антропогенным путем при горении ископаемого топлива. Загрязнение атмосферы оксидами азота в целом сравнительно невелико. Однако в районах с развитой химической промышленностью имеются локальные зоны повышенного содержания N0, N02 в воздухе (табл.3)

Таблица 3. Соединения азота и их концентрации в приземном слое атмосферы

Соединение

Концентрация азота, мкг/м3

загрязненный район 

отдаленный район 

океан 

NO

5 - 50

0.05 - 0.5

0.05

NO2

5-50

0,2 - 2,0

0,2

HNO3

2

0.2- 2

0.2

NH3

-

0.1 - 10

0.3

NO3 

2

0.1 - 0.4

0.02

NH4

-

1,0 - 2,0

0.4

Основными антропогенными источниками поступления оксидов азота в атмосферу является сжигание всех видов природного топлива (12 млн.т./год), транспорт (8 млн.т./год) и промышленность (1 млн.т./год).

Монооксид азота N0 образуется в малых количествах в цилиндрах двигателей внутреннего сгорания при прямом взаимодействии кислорода с азотом. В среднем выделение N0 автомобилем составляет 1-2 грамма на 1 км пробега.

Одним из важных свойств N0 является его способность реагировать с кислородом с образованием N02:

2NО (г) + О2 = 2 N02

Вследствие этой реакции некоторое количество диоксида азота присутствует в выхлопных газах двигателей внутреннего сгорания.

Газообразный диоксид азота растворяется в капельках влаги с образованием азотной кислоты:

ЗN02 + Н20 = 2НN03 + N0

Вымывая из атмосферы Н2S04 и НNО3, осадки становятся кислотными. Их рН зависит от количества как кислот, так и воды, в которой они растворены. Сильные дожди обычно менее кислотные. У туманов рН может упасть ниже всего, поскольку здесь кислоты растворены в относительно меньшем количестве влаги.

В настоящее время известно, что кислоты могут выпадать из атмосферы и без воды, сами по себе или с частицами пыли. Такие сухие кислотные отложения могут накапливаться на поверхности растений и при смачивании небольшим количеством влаги, например, при выпадении росы, давать сильные кислоты. Следовательно, к кислотным осадкам надо отнести и кислотную росу.

Мерой кислотности воды является концентрация ионов водорода  [Н+], выраженная в моль/л. Молекула воды слабо диссоциирует с образованием ионов водорода Н+ и гидроксид- ионов ОН-

Н2О Н+ + ОН- .

В пробе чистой воды концентрации [Н+ ] и [ОН-] равны между собой и эти величины при 25 0 С составляют 10-7 моль/л. Растворы с одинаковыми концентрациями ионов водорода и гидроксид-ионов называются нейтральными:

+] = [ОН-] = 10-7 моль/л .

Обычно кислотность раствора выражают другим способом. Вместо концентрации ионов водорода указывают ее десятичный логарифм, взятый с обратным знаком. Эта величина называется водородный показатель и обозначается рН

рН=-lg[Н+].

Так как -lg 10-7 = 7,  значит, рН=7 характеризует нейтральные растворы.

В кислой среде концентрация [Н+] больше [ОН-], а в щелочных, наоборот, концентрация гидроксид-ионов больше, чем ионов водорода:

[H+]  [OH-] ,   [H+] 10-7 ,  pH    7   - кислая среда

[H+]  [OH-] ,   [H+] 10-7 ,  pH    7   - щелочная среда.

Чистая дождевая вода не является нейтральной. В отсутствие любых загрязнителей у дождевой воды обычно слабокислая реакция (рН=5,6), поскольку в ней легко растворяется углекислый газ из воздуха с образованием слабой угольной кислоты (содержание углекислого газа в воздухе примерно 0,032% по объему или 0,046% по массе). В результате образуется слабая угольная кислота:

СО2 + Н2О = Н2СО3 .

Таким образом, кислотными точнее называть осадки с рН 5,5 и ниже. Кислотные осадки выпадают в большинстве промышленных районов мира. Над восточной частью США и Канады, вдоль западного побережья Северной Америки, а также почти над всей Европой рН дождя и снега обычно составляет около 4.5. Многие места в пределах этих регионов регулярно получают осадки с рН 4.0. В отдельных случаях рН дождя может быть гораздо ниже, а туман и роса бывают более кислыми, чем дождь.

Влияние кислотных осадков на экосистемы

Уже более ста лет кислотные осадки признаются серьезной проблемой в индустриальных и прилегающих к ним районах, но их влияние на экосистемы было отмечено только около 35 лет назад, когда рыбаки заметили резкое сокращение популяций рыбы во многих озерах Швейцарии, провинции Онтарио (Канада) и гор Адирондак (штат Нью-Йорк). Шведские ученые первыми определили, что все дело в повышенной кислотности воды, и связали ее с ненормально низкими значениями рН осадков. С тех пор выяснились различные пути разрушительного влияния кислотных осадков на экосистемы:

Схема возможных направлений влияния кислотных осадков на окружающую среду и человека.

Влияние на водные экосистемы. Значение рН среды чрезвычайно важно, т.к. от него зависит деятельность практически всех ферментов, гормонов и других белков в организме, регулирующих метаболизм, рост и развитие. Особенно подвержены влиянию рН яйцеклетка, сперма и молодь. У пресноводных озер, ручьев и прудов рН воды обычно составляет 6-7, и организмы адаптированы именно к этому уровню. При изменении рН воды всего лишь на одну единицу по сравнению с оптимумом они в большинстве случаев испытывают серьезный стресс и часто погибают.

Наиболее очевидное влияние кислотные осадки оказывают на водные экосистемы. В пресноводных водоемах рН воды обычно равен 6 - 7. Снижение рН до 5 приводит к постепенному вымиранию рыб. Однако нельзя считать, что взрослая рыба просто погибает в большом числе из-за повышенной кислотности воды в этих озерах. На самом деле сильно закисленные воды не позволяют рыбе нормально размножаться. Самки могут оказаться не способными выметать икру в кислой воде, если же икра все-таки попадает в воду, то она либо погибает, либо из нее вылупляются нежизнеспособные мальки.

Во многих районах, где количество рыбы уменьшилось вследствие кислотных дожей, наблюдались очень холодные зимы с обильными снегопадами. При таянии окрестных снегов подкисленная вода стекает в озера, что приводит к резкому увеличению кислотности.  Таяние снегов и повышение кислотности по времени совпадают с нерестом рыб. Таким образом, вымеченная икра попадает в максимально кислую воду, которая наблюдается в течение года. Можно предположить, что по мере сокращения численности рыбы будет уменьшаться и численность тех видов животных, которые питаются рыбой, таких, как белоголовый орлан, гагары, скопа, а также выдра, норка и др.

Из-за воздействия кислотных дождей может сокращаться численность лягушек, жаб и тритонов. Многие из этих видов размножаются во временных водоемах, возникающих в период весенних дождей;  вода в них может быть даже более кислой, чем в озерах, поскольку эти временные водоемы образованы только дождевой водой с повышенной кислотностью.

Когда среда водных экосистем подкислена, практически все организмы быстро вымирают, если не из-за прямого воздействия ионов Н+, то из-за невозможности размножения. Влияние кислотных осадков на экосистемы иногда усиливается в период таяния снегов, когда все накопившиеся за зиму кислотные осадки устремляются в ручьи и реки как раз в период размножения большинства организмов.

Дополнительный ущерб возникает в связи с тем, что кислотные осадки, просачиваясь сквозь почву, способны выщелачивать алюминий и тяжелые металлы. Обычно присутствие этих элементов в почве не создает проблем, так как они связаны в нерастворимые соединения и, следовательно, не поглощаются растениями. Однако при низком значении рН их соединения растворяются, становятся доступными и оказывают сильное токсическое воздействие, как на растения, так и на животных. Например, алюминий, довольно обильный во многих почвах, попадая в озера и реки, вызывает аномалии развития и гибели эмбрионов рыбы.

Влияние на леса. Кислотные дожди отрицательно воздействуют не только на животных, но и на растения. Опыты с моделированием кислотных дождей в теплицах продемонстрировали, что кислоты нарушают защитный восковой покров листьев, делая растения более уязвимыми для насекомых, грибов и других патогенных организмов.

Анализ воды дренирующих различные природные угодья при неодинаковых условиях показал, что кислотные осадки значительно увеличивают выщелачивание биогенов. Ионы водорода легко вытесняют их ионы с частиц почвы и гумуса. Кроме того, при низких значениях рН понижается активность редуцентов и азотфиксаторов, что еще более обостряет дефицит биогенов. Все эти обстоятельства могут вызвать дефицит биогенов, а значит, замедление роста деревьев и их уязвимость для естественных врагов и засух.

Кроме того, при поглощении почвами кислотный дождь выщелачивает соли калия, кальция, магния и, унося их в подпочвенный слой, лишает растения необходимых им питательных веществ.

Многие растения очень чувствительны к алюминию. Кислотные осадки влияют на содержание алюминия в почве, а он является элементом, токсичным для растений и животных. Этот элемент широко распространен: он присутствует в значительных количествах во многих горных породах и почвенных минералах. В естественных условиях соединения алюминия практически не растворимы, т.е. присутствует в недоступной для растений форме в фазе почвенных минералов и поэтому безвредны. Подкисление переводит алюминий в растворенное состояние, в котором он доступен растениям и может в них накапливаться, оказывая токсическое действие.

Этот процесс называется мобилизацией, в данном случае алюминия. Другие токсичные элементы, в том числе ртуть и свинец, также могут мобилизоваться при подкислении среды. Всё это может привести к замедлению роста и гибели деревьев.

Снижение буферной ёмкости. Защитить систему от изменения рН при добавлении кислоты может буфер. Так называется вещество, способное поглощать (или высвобождать ионы водорода при данном значении рН. Когда в систему, содержащую буфер, добавляют кислоту, дополнительные ионы водорода им поглощаются и рН остаётся практически неизменным.

Многие водоемы и почвы в качестве буфера содержат известняк (СаСОз). Озера, в подстилающих породах которых  присутствует известняк (осадочная порода, состоящая из карбоната кальция СаСО3), “сопротивляются” закислению воды в них, поскольку карбонат кальция нейтрализует кислоту:

H2SO4 + CaCO3 = CaSO4  + H2O + CO2 .

Фермеры давно используют известь для нейтрализации кислых почв. Садовники охотно применяют для тех же целей яичную скорлупу, раковины устриц, также состоящие из карбоната кальция.

Почвы, так же как и водоемы, по-разному реагируют на выпадение кислотных осадков. Чем больше в почве содержится карбоната кальция, тем меньше она подвержена закислению.

Однако возможности любого буфера ограничены. Известь, например, просто расходуется, реагируя с кислотой. Поэтому говорят о буферной емкости системы. Когда она исчерпана, дополнительные ионы водорода остаются в растворе, и происходит соответствующее понижение рН среды.

При одинаковом количестве кислотных осадков в первую очередь подкисляются и гибнут экосистемы с низкой буферной емкостью, а те, у которых она действительно высока, не страдают.

Влияние на людей и изделия. Одно из наиболее ощутимых последствий кислотных осадков - разрушение произведений искусства. Известняк и мрамор - излюбленные материалы для оформления фасадов зданий и сооружения памятников. Под действием кислотных дождей ускоренно корродируют металлоконструкции, нарушается целостность лакокрасочных покрытий, разрушаются здания и памятники архитектуры. Памятники и здания, простоявшие сотни и тысячи лет лишь с незначительными изменениями, сейчас растворяются и рассыпаются в крошево. Кислотные осадки разрушают строительные материалы, образованные карбонатом кальция (мрамор, известняк и др.). При взаимодействии с серной кислотой карбонат кальция превращается в гипс (СaSO4. 2О), который легко крошится, нарушая целостность конструкции:

Н2О

H2SO4 + CaCO3   =  СаSO4 .2H2O + CO2 .

Более того, мобилизация кислотными осадками алюминия и других токсичных элементов может привести к загрязнению как поверхностных, так и грунтовых вод. Как показано недавно, алюминий способен вызывать болезнь Альцгеймера, разновидность преждевременного старения.

Однако если выпадение кислотных осадков будет и в дальнейшем продолжаться в прежнем объеме, гораздо большее воздействие на человечество окажут потери озер и лесов, их экономической, экологической и эстетической ценности, а также последствия усиленной почвенной эрозии. Очевидно, что отсутствие приемлемой стратегии борьбы с этими осадками подрывает основы устойчивого развития общества.

Для предупреждения опасного воздействия кислотных осадков на экосистемы и антропогенные сооружения необходимо добиваться снижения выбросов в атмосферу оксидов серы и азота.

Ход работы

Оборудование и реактивы.

Бюретка на 25 мл.

Мерный цилиндр на 25 мл.

Колбы конические на 250 мл – 3 шт.

Химический стакан и воронка.

Раствор КОН.

Индикатор фенолфталеин.

Ход выполнения.

В коническую колбу мерным цилиндром отбирают 25 мл кислотных осадков определенного образца. В бюретку, закрепленную в штативе, наливают титрант КОН и доводят его объем до нулевой отметки, предварительно заполнив носик бюретки. В каждую колбу добавляют 3–4 капли индикатора фенолфталеина и титруют раствором КОН до перехода окраски от бесцветной к слабо–розовой, неисчезающей в течение 20 сек. Результаты титрования записывают в журнал, находят среднее арифметическое из трех определений и полученный результат подставляют в формулу, рассчитывая значение концентрации [Н+] :

                                                 СОН-  VОН-

С[Н+]= ---------------   ; где

                                                      VН+

  •  С[ОН] – концентрация КОН, (моль экв/л);
  •  V[ОН] – средний объем раствора КОН, пошедший на титрование, мл;
  •  V+]  – средний объем кислотных осадков взятый для определения, мл.

Вычисляют значение рН по формуле:

рН = – lg С[Н+].

Вывод.

Полученные результаты рН сравнивают со шкалой и делают вывод о рН исследуемого образца.


 

А также другие работы, которые могут Вас заинтересовать

34750. Обыденные представления человека Древней Руси о времени и хронологии 17.96 KB
  Таковы например масленица коляда от латинского календы; другое название этого праздника овсень от овесень которым отмечали поворот солнца на лето красная горка праздник встречи весны радуница и русалии весенний и летний поминальные праздники и другие.Пережиточные названия дней недели связанные с астральными культами сохранились в некоторых странах Европы до наших дней например: немецкие Montg день Луны понеденьник Sonntg день солнца воскресенье французское Vendredi день Венеры пятница...
34751. Реформа Летоисчисления Петра 1 11.17 KB
  Петр же хотел чтобы подобно остальным европейским государствам новый год считали от Рождества Христова с 1 января. С этой целью 20 декабря был издан указ чтобы Новый год по примеру всех остальных христианских держав считать с 1 января через 8 дней после Рождества Христова 25 декабря по старому стилю. Кроме того повсюду где место удобное от 1 до 7 января надобно зажигать костры и смоляные бочки .
34752. Понятие о мартовском, сентябрьском и ультрамартовском годах византийской эры. Способы их перевода на современную систему летоисчисления 55.18 KB
  Перевод даты по ультрамартовскому стилю на современную систему летосчисления: Если событие приходится на период времени между мартом и декабрем включительно для перевода в современную систему счета времени необходимо от даты по эре от сотворения мира отнять 5509 лет. Задача 1:Перевести в современную систему летосчисления дату приведенную по ультрамартовскому стилю: 18 июля 6793 г. Решение:Так как дата приведена по ультрамартовскому стилю то для месяца июля вычитаем 5509. Задача 2:Перевести в современную систему летосчисления дату...
34753. Датировка событий по указаниям на церковные праздники. Датировка по астрономическим явлениям 15.25 KB
  Что касается подвижных праздников то все они зависят от Пасхи отделяясь от нее определенными постоянными сроками до Пасхи или после нее. Например Вознесение Господне четверг через 39 дней после Пасхи Вербное воскресенье за 7 дней до Пасхи Фомино воскресенье через 7 дней после Пасхи вход Господен в Иерусалим за 7 дней до Пасхи.Подвижность самой Пасхи объясняется тем что она рассчитывается по лунному календарю.Для определения дня Пасхи пользуются специальными таблицами обращения великого индиктиона.
34754. Определение дней недели с помощью формул и таблиц 15.12 KB
  Существует несколько математических формул для определения дня недели. Перевощикова: X равен остатку от деления выражения [H 1 1 4 H1 T1]:7 гдеX порядковый номер дня недели считая с воскресенья воскресенье 1 понедельник 2 и т. Черухина: X равен остатку от деления выражения [5 Н:4МТ]:7 гдеX порядковый номер дня недели считая с понедельника понедельник 1 вторник 2 и т.
34755. Предмет, цели и задачи метрологии 16.23 KB
  Задачей метрологии является обеспечение единства и необходимой точности измерений. Метрология делится на 3 самостоятельных раздела: Законодательная метрология предметом которой является установление обязательных технических и юридических требований по применению единиц физических величин эталонов методов и средств измерений направленных на обеспечение единства и необходимой точности измерений в интересах общества. Цели и задачи метрологии: Создание общей теории измерений; образование единиц физических величин и систем единиц;...
34756. Диалектика как учение о всеобщей связи и развитии. Метафизическое понимание развития. Объективная и субъективная диалектика. Софистика и эклектика. Диалектическая логика и догматизм 27 KB
  Объективная и субъективная диалектика. Диалектическая логика и догматизм Диалектика достаточно сложное учение и даже наше поверхностное учитывая дефицит времени рассмотрение ее проблематики займет у нас шесть вопросов. Начало традиционно дается определение диалектика. Учитывая что диалектика присутствовала и в дофилософские времена и разрабатывалась на протяжении всей истории философии целесообразно дать два определения диалектика.
34757. Принцип развития. Движение и развитие. Соотношение регресса и прогресса. Парадокс развития. Критерий прогресса 42 KB
  Парадокс развития. Уже на начальных этапах развития человеческого познания мыслители глубокой ревности обратили внимание на изменчивость бытия. На различных этапах развития науки и философии существовали теории абсолютизирующие одни формы движения и игнорирующие другие.
34758. Диалектика количественных и качественных изменений. Качество, количество, мера, скачок. Понятие нормы и патологии в медицине 79.5 KB
  Он предстает перед человеком не скоплением одинаковых предметов а как множество предметов явлений процессов наделенных различными свойствами. Вот почему познание предметов требует усилия мысли синтеза их многообразных проявлений. А множественность различных предметов характеризуется как качественное многообразие. Свойства обнаруживаются как проявления тех или иных черт сторон предметов в их отношениях с другими пред метами.