16750

Результаты исследовательских работ по бактериальному окислению золотосодержащего флотоконцентрата перколяционным способом

Научная статья

География, геология и геодезия

Результаты исследовательских работ по бактериальному окислению золотосодержащего флотоконцентрата перколяционным способом Шамин В.Ю. директор Северного рудоуправления НГМК; Морозов М.П. зам. главного инженера по ГМП Северного рудоуправления НГМК; Митраков О.Е. инже...

Русский

2013-06-25

57.5 KB

2 чел.

Результаты исследовательских работ по бактериальному окислению золотосодержащего флотоконцентрата перколяционным способом

Шамин В.Ю., директор Северного рудоуправления НГМК; Морозов М.П., зам. главного инженера по ГМП Северного рудоуправления НГМК; Митраков О.Е., инженер-технолог опытно-технологической лаборатории ГМЗ-3 Северного рудоуправления НГМК; Эргашев У.А., зам. главного инженера ГМЗ-3 Северного рудоуправления НГМК, канд. техн. наук

 

 

 

 

 


В настоящее время технология, применяемая на гидрометаллургическом заводе № 3 Государственного предприятия <Навоийский горно-металлур-гический комбинат> (ГМЗ-3 НГМК) ориентирована на переработку окисленных руд месторождений <Кокпатас> и <Даугызтау>. В процессе эксплуатации данных месторождений окисленные руды приповерхностных горизонтов в основном отработаны. Сульфидные руды этих месторождений технологически относятся к разряду упорных и переработка их по существующей технологии на ГМЗ-3 невозможна, что связано с нахождением большей части золота в виде тонкой вкрапленности в пирите и арсенопирите [1]. Проектом развития ГМЗ-3 предусматривается флотационное обогащение сульфидных руд с последующим биоокислением флотоконцентрата и сорбционным цианированием продуктов. Программа перехода переработки от окисленных руд к сульфидным уже реализуется. Для биоокисления флотоконцентратов в 2008 г. запланирован ввод в эксплуатацию технологии BIOX на стадии пускового комплекса. Запуск технологии BIOX на полное развитие требует средств и времени. На период перехода ГМЗ-3 на переработку золотосульфидных руд, в условиях дефицита сырья для

загрузки мощностей производства актуальны незатратоемкие инженерные решения, позволяющие увеличить выпуск продукта. В этом плане представляет интерес бактериальное окисление флотоконцентрата кучным способом (малозатратная технология), который позволяет подготовить материал для его

переработки по

действующей технологии ГМЗ-3. Бактериальное окисление флотоконцентрата в куче затруднено из-за его гранулометрического состава (более 80% фракции класса - 0,074 мм). Для решения этой задачи в мировой практике известны много приемов. Определенный интерес представляет технология, разработанная фирмой , получившая название , включающая в себя нанесение концентратов упорных золотых руд на грохоченную породу (гранулы носители), которая может быть представлена пустой породой или забалансовой золотосодержащей рудой. Обработанный материал укладывается в кучу. После бактериальной обработки окисленный материал перерабатывается традиционными гидрометаллургическими методами [2].
С целью изучения принципиальной возможности применения выше изложенного способа для окисления флотоконцентратов, полученных при обогащении сульфидных руд месторождения Кокпатас, были проведены лабораторные исследования (рис. 1). В качестве гранул носителей использована заскладированная окисленная забалансовая руда, прямая переработка которой на заводе

экономически не выгодна. Последнее, можно отнести в определенной степени к расширению сырьевой базы для ГМЗ-3.

Опыты проводились в колоннах O 219 мм и высотой 1,5 м (рис. 1). Флотоконцентрат перед загрузкой в колонны агломерировался на гранулы носители издробленные до определенных классов крупности. Агломерация флотоконцентрата на гранулы носители проводилась методом перекатывания в присутствии слабого раствора серной кислоты. Масса материала загружаемая в колонны составляла от 33,3 до 36,5 кг. Наличие карбонатов в пробах требовала предварительного его закисления (декарбонизация) для обеспечения стабильного значения рН при биоокислении. Декарбонизацию материала проводили раствором серной кислоты с рН=1,5 в течении 22-26 суток. Расходные показатели кислотопоглощения проб, уложенных в опытные колонны, представлены в табл. 1.

После установления рН в оборотных растворах на уровне 1,8-2,0 колонны орошали бактериальным раствором с интенсивностью 200-220 мл/м2 сутки. Использовалась культура тионовых бактерий имевшаяся в коллекции института микробиологии АН РУз. Продолжительность бактериального орошения составила 150 суток. Эксперимент осуществлялся при температуре 20-250 С. Вытекающие с колонны бактериальные растворы анализировались на содержание Fe+3, Feобщ., As+5, Asобщ., рН и ?h растворов по которым осуществлялся контроль за процессом биоокисления в период эксперимента. Мониторинг окислительной активности показывает (рис. 2), что максимальная геохимическая активность наблюдается на 40-50 сутки, затем она постепенно снижается и на 140-150 сутки приобретает прямую линию, что свидетельствует о практическом завершении процесса окисления.
По окончании бактериального орошения материал подвергался промывке слабокислым раствором и водой до установления в промывных водах рН 4, затем подщелачиванию и сорбционному цианированию. Сорбционное цианирование проводилось по стандартной методике (СNaCN=0,3 г/дм3, т:ж=1:2, рН=10,5-11,5). Анализ полученных результатов исследований до и после биоокисления представлен в табл. 2-4.

Таким образом, в результате проведенных исследований установлена принципиальная возможность биоокисления флотоконцентратов, полученных из сульфидных руд месторождения Кокпатас, в перколяционном режиме как незатратаемкий способ подготовки для дальнейшей переработки по существующей на заводе технологии. Извлечение золота за 150 суток бактериального окисления составило 76-78%. Наличие карбонатов в пробах требует предварительного его закисления. Расход кислоты при этом составил 24-30 кг/т.

Для обеспечения оптимальной фильтрации орошающего раствора, флотоконцентрат агломерируется на гранулы носители. Использование в качестве гранул носителей не товарных (заскладированных) окисленных руд в свою очередь имеет значение по расширению сырьевой базы ГМЗ-3 НГМК.
Примечание: данная статья опубликована в "Горном журнале" № 8, 2008 г.

Список литературы:

1. Кучерский Н.И. Современные технологии при освоении коренных месторождений золота. - Москва, издательство <Руда и металлы>, 2007г., 696с.
2. C.Johansson, V/Shrader, J/Suissa, K.Adutwum and W.Kohl. Use of the GEOCOATTM  Process for the Recovery of Copper from  Chalcopyrite, in: R.Amils and  A.Ballester  (eds.), Biohydromerallurgy and the environment Towanrd the Mining of the 21stCentury, Elsevier, Amsterdam, 1999,p.569.


 

А также другие работы, которые могут Вас заинтересовать

29825. Акустика помещений 26.45 KB
  Отражения звука от стен помещения: И источник звука; С слушатель; 1 прямой звук; 2 звук претерпевший одно отражение; 3 после двух отражений; 4 после трех отражений Именно звуковые отражения когда источник звука выключен поддерживают поле и звук не пропадает мгновенно а замирает в течение какогото определенного для данного помещения времени. Такое постепенное замирание звука в помещении иначе послезвучание называется реверберацией. От скорости замирания звука зависит время существования отзвука в помещении так...
29826. Математическое описание дискретных СУ (ДСУ) 373 KB
  Передаточные функции и динамические характеристики ДСУ Импульсная характеристика ДСУ Рекурсивный и нерекурсивный алгоритмы обработки. Будем рассматривать полностью дискретную СУ рис. Xkk=0m yk k=0n рис.2 q=0 i=1 Данный алгоритм принято изображать в виде структурной схемы рис.
29827. Правила преобразования структурных схем 183 KB
  Передаточные функции замкнутой системы управления. Исходная схема системы управления может быть очень сложной. При этом должны сохраняться динамические свойства системы относительно входных и выходных сигналов. Пусть дана структурная схема системы управления: x b y _ Определим передаточную функцию системы по...
29828. Алгебраические критерии устойчивости 115.5 KB
  Алгебраические критерии устойчивости. Частотные критерии устойчивости. Запасы устойчивости СУ. Понятие об областях устойчивости.
29829. Анализ импульсных систем управления 282 KB
  Эквивалентная схема импульсной системы управления. Динамические характеристики разомкнутой системы управления. Эквивалентная схема замкнутой импульсной системы управления. Динамические характеристики замкнутой импульсной системы управления.
29830. Метод корневого годографа 145 KB
  Метод Dразбиения плоскости двух параметров В некоторых случаях критерии устойчивости позволяют проследить влияние параметров на устойчивость системы. Существуют специальные методы построения областей устойчивости. Пусть при некотором  = крит корень характеристического уравнения попадает на мнимую ось тогда при значении крит система находится на границе устойчивости. Если  это коэффициент передачи то при  крит система устойчива  = крит система находится на границе устойчивости  крит система неустойчива.
29831. Селективная инвариантность к степенным воздействиям 193.5 KB
  Условие селективной абсолютной инвариантности: Wf pk = 0 pk k = 1n 4 для всех корней воздействия Если возмущение имеет изображение с полюсами pk а передаточная функция системы на этих полюсах равна 0 то система будет абсолютно инвариантна к этому возмущению. В этом случае И система обладает селективной абсолютной инвариантностью абсолютной т. Говорят что система является астатической относительно ступенчатого возмущения. когда ОПФ имеет двукратный нулевой нуль и система селективно абсолютно...
29832. Условия инвариантности одноконтурных СУ к степенным возмущениям 176.5 KB
  Ошибка системы на гармоническое воздействие иногда называется динамической ошибкой Анализ результата: Если возмущение на объект ступенчатое то тогда можно рассчитать Для ковариантной системы когда выходной сигнал совпадает с заданием Wзамкн0=1. Стандартные типовые законы управления 1 Пзакон 2 Изакон 3 ПИзакон Для селективной абсолютной инвариантности системы по отношению к ступенчатому возмущению на входе объекта необходимо чтоб в законе управления...
29833. Нелинейные СУ 266.5 KB
  Типовые нелинейные звенья и их характеристики. Типовые соединения нелинейных звеньев и их характеристики. Линеаризация статических характеристик методы компенсационных и вибрационных линеаризации...