1676

Объекты и субъекты метрологии

Контрольная

Маркетинг и реклама

Объекты метрологии. Величины, их классификация и характеристика. Классификация физических величин и единиц их измерения. Субъекты метрологии, их классификация и краткая характеристика.

Русский

2013-01-06

2.36 MB

188 чел.

Объекты и субъекты метрологии


Вопросы:

  1.  Объекты метрологии. Величины, их классификация и характеристика
  2.  Классификация физических величин и единиц их измерения
  3.  Виды измерений
  4.  Субъекты метрологии, их классификация и краткая характеристика – Практическая работа

1. Объекты метрологии: величины, их классификация и характеристики

Основными объектами метрологии являются величины и измерения.

Величина - свойство измеряемого объекта, общее в качественном отношении для всех одноименных объектов, но индивидуальное - в количественном.

Величины подразделяются на физические и нефизические.

Физическая величина – одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них

Не физические величины - свойства экономических, психологических и тому подобных объектов, не относящихся к физическим объектам. Их измерение производится опосредовано, через физические величины.

Например, экономическая характеристика - цена - имеет денежное выражение относительно определенных единиц измерения (килограмм, метр и т.п.). Такое психологическое свойство личности, как быстрота реакции выражается в единицах времени (например, время принятия решений).

Долгое время считалось, что объектами метрологии могут быть лишь физические величины. Однако в последнее время возникла необходимость измерения и нефизических величин, в основном через физические величины. Таким образом, сфера применения метрологии значительно расширилась.

Вместе с тем необходимо отметить, что отдельные авторы (М.Н. Селиванов, И.М. Лифиц) считают, что к нефизическим величинам целесообразно применять термин не «измерение», а «оценивание». В то же время в новом ФЗ ОЕИ применяется только термин «измерение».

Из определения термина «величина» следует, что она имеет две характеристики: качественную, или размерность, определяемую как наименование, и количественную, или размер, определяемую как значение измеряемой величины.

Получение информации о размере физической и нефизической величины является целью и конечным результатом любого измерения.

Совокупность наименований физических величин и единиц их измерений составляют систему измерений.

Значения измеряемых величин, как отмечалось, индивидуальны и в определенной мере случайны, что обусловлено основным постулатом метрологии: «Любой отсчет является случайным».

Несмотря на это в метрологии принято различать следующие значения физических величин: истинное, действительное и результат наблюдения.

Истинное значение физических величин - значение, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующую физическую величину.

Действительное значение физических величин - значение физических величин, найденное экспериментальным путем и настолько близкое к истинному значению, что для поставленной измерительной задачи может его заменить.

Результат наблюдения - однократное фактически измеренное значение физических величин.

Значения физических величин выражаются в установленных, принятых единицах измерения.

Единица величины - фиксированное значение величины, которое принято за единицу данной величины и применяется для количественного выражения однородных с ней величин.

Измерение конкретной физической величины производят путем ее сравнения с величиной, принятой за единицу этой величины. Результатом измерения будет определенное число, показывающее соотношение измеряемой величины с единицей физической величины.

2. Классификация физических величин и единиц их изменения

Классификация единиц измерения физических величин представлена на рис. 2.2.

 

Основная физическая величина - величина, условно принятая в качестве независимой от других физических величин. Примером основной физической величины могут служить длина, масса и т.п. (табл. 2.1).

Основная физическая величина - это физическая величина, входящая в систему величин и условно принятая в качестве независимой от других величин этой системы (табл. 2.1).

Производная физическая величина - физическая величина, определяемая через основные величины этой системы. К производным величинам относятся объем, площадь, скорость движения, относительная плотность и др.

Производная единица физической величины - единица производной физической величины. Производные физические величины могут быть получены из одноименных или разноименных физических величин. Примером одноименных величин могут служить дольные единицы массы грамм, миллиграмм или кратные - тонна (т), центнер (ц), а разноименных - метр в секунду (м/с), грамм на дециметр кубический (г/дм3) и т.п.

Система единиц физических величин - совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин.

Первой системой единиц физических величин была метрическая система, в которой вначале было две основные единицы: метр - единица длины и грамм - единица веса. Метрическая система сначала была принята во Франции (1840), затем в Германии (1849). В дальнейшем она была допущена наряду с национальными системами в Великобритании (1864), США (1866), России (1899). Однако наряду с метрической системой в других странах использовались и национальные, исторически сложившиеся системы, которые применяются и в настоящее время. Например, в Великобритании, США и Канаде до сих пор используются единицы, не имеющие целочисленного десятичного соотношения с метрической системой.

В 1960 г. ХI Генеральная конференция по мерам и весам утвердила Международную систему единиц, содержащую шесть основных физических величин и обозначаемую сокращенно SI, в русской транскрипции - СИ. В 1970 г. эта система была дополнена седьмой основной физической единицей - количеством вещества - молем. В 1980 г. СИ была принята в нашей стране. (см. табл. 2.1).

Единицы измерения являются одним из объектов ФЗ ОЕИ (ст. 6), в котором регламентируются требования к единицам величин. (списать самостоятельно)

Требования к единицам величин заключаются в следующем:

  1.  в РФ применяются единицы величин СИ, принятые Генеральной конференцией по мерам и весам (ГМКВ) и рекомендованные к применению Международной организацией законодательной метрологии. Правительством РФ могут быть допущены к применению в РФ наравне с единицами величин СИ внесистемные единицы величин. Наименования единиц величин, допускаемых к применению в РФ, их обозначения, правила написания, а также правила их применения устанавливаются Правительством РФ;
  2.  характеристики и параметры продукции, поставляемой на экспорт, в том числе средств измерений, могут быть выражены в единицах величин, предусмотренных договором (контрактом), заключенным с заказчиком;
  3.  единицы величин передаются средствам измерений, техническим системам и устройствам с измерительными функциями от эталонов единиц величин и стандартных образцов.

В России внесистемными единицами измерений являются, например, градус Цельсия и килокалория наряду с кельвином и джоулем.

В соответствии с решениями Генеральной конференции по мерам и весам (ГКМВ), принятыми в разные годы, действуют следующие определения основных единиц СИ.

Единица длины - метр - длина пути, проходимого светом в вакууме за 1/299792458 доли секунды.

Единица массы - килограмм - масса, равная массе международного прототипа килограмма.

Единица времени - секунда - продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 не возмущенного внешними полями.

Единица силы электрического тока - ампер - сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, создал бы между этими проводниками силу, равную 2·10-7 Н на каждый метр длины.

Единица термодинамической температуры - кельвин - 1/273,16 часть термодинамической температуры тройной точки воды. Допускается выражение термодинамической температуры в градусах Цельсия.

Единица количества вещества - моль - количество вещества системы, содержащей столько же структурных элементов, сколько атомов содержится в нуклиде углевода- 12 массой 0,012 кг.

Единица силы света - кандела - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Как отмечалось, наряду с системными единицами СИ допускается применение внесистемных единиц. Примером внесистемных единиц массы, являющимися производными от килограмма, могут служить тонна, центнер, пуд, карат, золотник и др.

Производные единицы физических величин подразделяются на системные и внесистемные, а по отношению к основным единицам - на кратные и дольные.

Кратная единица физической величины - единица физической величины, в целое число раз большая системной или внесистемной единицы.

Дольная единица физической величины - единица физической величины в целое число раз меньшая системной или внесистемной единицы.

Примером кратной единицы длины основной единице - метру - служат километр, а дольной - миллиметр, сантиметр, дециметр.

Для удобства применения единиц физических величин приняты приставки для образования кратных и дольных единиц, например, деци, санти и т.д.

Практическая работа по единицам Там списать таблицы из Сергеева стр. 21-29)

3. Виды измерений

Измерения подразделяются на виды по определенным классификационным признакам (рис. 2.3):

1) по способу получения информации - на прямые, косвенные, совокупные и совместные.

Прямые измерения - измерения, при которых искомое значение величины получают непосредственно от средства измерений, например, измерение длины линейкой.

Косвенные измерения - измерения, при которых искомое значение величины определяется на основании прямых измерений других физических величин, связанных с искомой величиной известной функциональной зависимостью, и расчета первой через вторые. Например, содержание крахмала в картофеле и соли в рассоле определяют по относительной плотности клубней или рассола.

Совокупные измерения - измерения, при которых определяются фактические значения нескольких однородных величин, а действительное значение искомой величины устанавливается путем решения системы уравнений.

Число уравнений системы должно быть меньше числа искомых величин. Совокупные измерения являются усложненной разновидностью прямых измерений. Например, при определении объема объекта измеряется три длины: длина (L), ширина (d) и высота (h), при этом объем находят по формуле V=Ldh.

Совместные измерения - измерения, при которых устанавливаются фактические значения неоднородных величин с целью нахождения зависимости между ними. Совместные измерения являются разновидностью косвенных. Часто совместные измерения применяются для определения коэффициентов. Например, коэффициент загрузки склада рассчитывают путем измерения массы товаров и занимаемой ими полезной складской площади;

2) по характеру измерения получаемой информации в процессе измерений - на статические, динамические и статистические.

Статические измерения - измерения, которые проводятся при практическом постоянстве искомой величины, например измерение массы металлического объекта. Т.е. если определяются характеристики случайных процессов, то измерения называются статическими и их можно определить только многократными измерениями.

Динамические измерения - измерения, в процессе которых искомая величина изменяется во времени. Например, при измерении массы растертой влажной навески продукта за счет постоянного испарения воды масса уменьшается.

Статистические измерения - измерения, связанные с определением характеристик случайных процессов, шумовых сигналов и др., например измерения массы дефектной продукции при окончательном контроле у изготовителя;

3) по количеству измерительной информации - на одно- и многократные.

Однократные измерения - измерения, при которых число измерений равняется числу измеряемых величин. На практике рекомендуется считать однократным’ усредненный результат не менее двух-трех измерений. Недостатком однократных измерений является возможность возникновения грубых, неустраненных погрешностей.

Многократные измерения - измерения, при которых число измерений (n) превышает число измеряемых величин (m). Обычно на практике n>3.

Целью многократных измерений является уменьшение влияния случайных погрешностей на результат измерения;

4) по отношению к основным единицам на абсолютные и относительные.

Абсолютные измерения - измерения при которых результат основывается на прямых измерениях одной или нескольких основных физических величин, например измерение длины, площади, объема и т.п.

Относительные измерения - измерения, при которых действительное значение искомой величины устанавливается как отношение одной величины к другой однородной или неоднородной величине. Например, относительная плотность объекта устанавливается как отношение массы к объему.

При измерении определяется размер или количественная характеристика физической величины. Однако в ряде случаев возникает необходимость определить лишь размерность, физической величины, т. е. ее качественную характеристику, например, кислотность (рН) среды, наличие электрического тока или какого-либо вещества в многокомпонентной среде. В таких случаях используют обнаружение.

Обнаружение - установление качественных характеристик искомой физической величины. При обнаружении единицы измерения не устанавливаются, но нуль при обнаружении служит подтверждением отсутствия физической величины. Например, при обнаружении электрического тока в сети прибор может фиксировать его отсутствие.

Средствами обнаружения чаще всего служат индикаторы, например индикатор электрического тока; химические индикаторы, фиксирующие наличие в растворах определенных веществ (фенолфталеин и метилоранж используются для обнаружения в растворе щелочи; реактив Тильманса -аскорбиновой кислоты и др.).

Таким образом, обнаружение можно рассматривать как разновидность измерения физических величин, относящихся к ее качественным характеристикам.

Требования к измерениям устанавливаются в ФЗ ОЕИ (ст. 5) Списать самостоятельно:

  1.  измерения, относящиеся к сфере государственного регулирования ОЕИ, должны выполняться по аттестованным методикам (методам) измерений, за исключением методик (методов) измерений, предназначенных для выполнения прямых измерений, с применением средств измерений утвержденного тип, прошедших поверку. Результаты измерений должны быть выражены в единицах величин, допущенных к применению в РФ;
  2.  методики (методы) измерений, предназначенные для выполнения прямых измерений, вносятся в эксплуатационную документацию на средства измерений. Подтверждение соответствия этих методик (методов) измерений обязательным метрологическим требованиям к измерениям осуществляется в процессе утверждения типов данных средств измерений. В остальных случаях подтверждение соответствия методик (методов) измерений обязательным метрологическим требованиям к измерениям осуществляется путем аттестации методик (методов) измерений. Сведения об аттестованных методиках (методах) измерений передаются в Федеральный информационный фонд по ОЕИ юридическими лицами и индивидуальными предпринимателями, проводящими аттестацию;
  3.  аттестацию методик (методов) измерений, относящихся к сфере государственного регулирования ОЕИ, проводят аккредитованные в установленном порядке в области ОЕИ юридические лица и индивидуальные предприниматели;
  4.  порядок аттестации методик (методов) измерений и их применения устанавливается федеральным органом исполнительной власти, осуществляющим функции по выработке государственной политики и нормативно-правовому регулированию в области ОЕИ;
  5.  федеральные органы исполнительной власти, осуществляющие нормативно-правовое регулирование в регламентируемых областях деятельности, определяют измерения, относящиеся к сфере государственного регулирования ОЕИ, и устанавливают к ним обязательные метрологические требования, в том числе показатели точности измерений;
  6.  федеральный орган исполнительной власти, осуществляющий функции по оказанию государственных услуг и управлению государственным имуществом в области ОЕИ, ведет единый перечень измерений, относящихся к сфере государственного регулирования ОЕИ.

4. Субъекты метрологии - юридические и физические лица, осуществляющие метрологическую деятельность. К ним относятся международные и региональные организации по метрологии, а также метрологические службы (государственные и юридических лиц).

Метрологическая служба - организующие и/или выполняющие работы и/или оказывающие услуги по ОЕИ структурное подразделение центрального аппарата федерального органа исполнительной власти и/или его территориального органа, юридическое лицо или структурное подразделение юридического лица либо объединения юридических лиц, работники юридического лица, индивидуальный предприниматель.

Различают три уровня субъектов метрологии: международный, региональный и национальный (рис. 24).

Международный уровень представлен международными метрологическими организациями, в состав которых входят представители национальных организаций по метрологии, а региональный - метрологическими организациями стран определенного региона земного шара.

Национальный уровень метрологии имеет два подуровня: государственный; службы юридических лиц. Государственный подуровень метрологии включает Ростехрегулирование, научные метрологические центры (НМЦ) и центры стандартизации и метрологии (ЦСМ). Каждая группа субъектов национального подуровня обладает определенными функциями и областью компетентности,

Ростехрегулирование (Федеральная служба по техническому регулированию и метрологии) осуществляет государственное управление ОЕИ. К его компетенции относится:

  1.  представление Правительству РФ предложений по единицам величин, допускаемым к применению;
  2.  установление правил создания, утверждения, хранения и применения эталонов единиц величин;
  3.  определение общих метрологических требований к средствам, методам и результатам измерений;
  4.  осуществление государственного метрологического контроля и надзора;
  5.  осуществление контроля за соблюдением условий международных договоров РФ о признании результатов испытаний и поверки средств измерений;
  6.  руководство деятельностью Государственной метрологической службы и иных государственных служб ОЕИ;
  7.  участие в деятельности, международных организаций по вопросам ОЕИ.

Государственная метрологическая служба находится в ведении Ростехрегулирования и включает: государственные научные метрологические центры (ГНМЦ); органы Государственной метрологической службы в регионах России.

ГНМЦ представлены Государственной службой времени, частоты и определения параметров вращения Земли (ГСВЧ), Государственной службой стандартных образцов, состава и свойств веществ и материалов (ГССО) и Государственной службой стандартных справочных данных о физических константах и свойствах веществ и материалов (ГСССД). Руководство и координацию их деятельности осуществляет Ростехрегулирование.

ГНМЦ несут ответственность за создание, совершенствование, хранение и применение государственных эталонов единиц величин, а также за разработку НД по ОЕИ

В состав органов Государственной метрологической службы входят ЦСМ, осуществляющие государственный метрологический контроль и надзор во всех регионах России.

Метрологическая служба юридических лиц представлена метрологическими службами федеральных органов управления и предприятий (МСП), являющихся юридическими лицами (ФЗ ОЕИ). Метрологические службы в государственных органах управления и на предприятиях создаются при необходимости в установленном порядке для выполнения работ по обеспечению единства и требуемой точности измерений, а также для осуществления метрологического контроля и надзора. При выполнении работ в сферах, где необходима поверка средств измерения, создание метрологических служб и иных организационных структур по ОЕИ является обязательным.

Метрологические службы юридических лиц осуществляют метрологический контроль путем калибровки средств измерений, надзора за состоянием и применением средств измерений, аттестованными методиками измерений, эталонами единиц величин, применяемыми для калибровки средств измерений, а также за соблюдением установленных метрологических правил и норм. Кроме того, они осуществляют проверки своевременности представления средств измерений на испытания в целях утверждения типа средств измерений, а также на поверку и калибровку.


 

А также другие работы, которые могут Вас заинтересовать

68127. Караюсь, мучуся… Але не каюсь! 76 KB
  Діючі особи: Тарас Шевченко Фельд’єгер конвоїр Сидорчук вартовий в Орській фортеці Андрій Козловський засуджений Мєшков офіцер Лаврентьєв писар Друг Шевченка засуджений Абдрахман киргиз Кульжан донька Абдрахмана Бутаков офіцер Тищенко солдат Фундуклей губернатор Києва Думки Шевченка читці поезій...
68128. Слова в вірші – і рай в душі 78.5 KB
  Мета: поглибити учнівські знання з теорії літератури ідейнохудожнього аналізу поетичного твору удосконалювати вміння виразного читання; розвивати поетичне мислення образну уяву; виховувати любов до художнього слова та до рідної природи. Я зачитуватиму поетичні рядки а ви повинні підставити...
68129. Інтелектуальна гра «Літературна веселка» Ти завжди в серцях людей, Тарасе! 43.5 KB
  Шевченка розвивати логічне мислення виразне читання виховувати повагу до Шевченкового слова та цікавість до вивчення його творчості. Тарас Шевченко Тарас Це бунтівне пророче ім’я знайоме не тільки українцям а й усьому світові. Шевченко це криниця з джерельною водою яка втамовує духовну спрагу народу.
68130. Знайомство з країною Логікою 28.5 KB
  Сьогодні діти ми відправляємось у незвичайну подорож. Діти ходять до школи найкоротшим шляхом але можуть годинами блукати різноманітними лабіринтами. Діти імітують посадку на автобус і їзду. Ось компанія яка У якій послідовності сидять діти Боря Петрик Юрко Віра Стас Іра.
68131. Аналогія. Добір малюнків за аналогією 263.5 KB
  Тип уроку: урок засвоєння умінь і навичок Обладнання: геометричні фігури і предметні малюнки до гри Фотограф; індивідуальні набори геометричних фігур гралото малюнки з послідовністю. Міняю місцями фігури деякі взагалі прибираю. Всі фігури різного кольору А тепер відкрийте очі подивіться...
68132. Подорож по океану логічних завдань 27.5 KB
  Мета: Познайомити дітей з різними поняттями; розвивати мислення, мову, пам’ять, спостережливість; виховувати сміливість, рішучість. Хід уроку Повідомлення теми і мети уроку. Сьогодні ми вирушаємо у кругосвітню подорож на кораблі. Нас чекає багато різних пригод. Людина – мисляча істота. Думки словами виражає.
68133. Сумісні та несумісні поняття. Завдання для повторення 84.5 KB
  Мета: узагальнити й систематизувати знання учнів про поняття про сумісні та несумісні поняття вдосконалювати вміння учнів розв’язувати логічні завдання розвивати логічне мислення кмітливість увагу пам’ять уяву; виховувати любов до тварин пробуджувати пізнавальний інтерес до всього живого формувати самоосвітні...