16813

Применение СВЧ печей для разложения золотосодержащих проб

Научная статья

География, геология и геодезия

УДК 622.765.063 Применение СВЧ печей для разложения золотосодержащих пробХайдарова З.Р. магистрант НГГИ; Музафаров А.М. начальник бюро ЦНИЛ НГМК Методов обогащения золотосодержащих проб применяемых в промышленности очень много и они разнообразны. В последнее время с появ

Русский

2013-06-25

63 KB

2 чел.

УДК 622.765.063

Применение СВЧ печей для разложения золотосодержащих проб
Хайдарова З.Р., магистрант НГГИ; Музафаров А.М., начальник бюро ЦНИЛ НГМК

Методов обогащения золотосодержащих проб применяемых в промышленности очень много и они разнообразны. В последнее время с появлением компактных и удобных программируемых СВЧ печей появилась надежда применения их для обогащения золотосодержащих проб [1-3].

СВЧ система является разносторонним, экономичным инструментом для подготовки образцов для атомно-абсорбционных, рентгеноспектральных и плазменно-спектральных анализов. Это метод разложения проб помогает уменьшить время подготовки образца более чем на 90% против стандартной горячей листовой техники [1]. Большой выбор компонентов для конкретных лабораторных потребностей, безопасность оператора, увеличение системотехники, надежность инструмента и удобство эксплуатации дает надежду в обеспечении необходимого спроса. СВЧ система, также, включает дистанционное системное управление через программное обеспечение Win Wave, чтобы гарантировать надежное и безопасное выполнение операций [2].

Учитывая вышеприведенное, исследование применения СВЧ печей для разложения золотосодержащих проб является актуальным. В этой статье обобщены некоторые результаты, полученные в лабораторных условиях.

Физические основы СВЧ обработки

Микроволновая энергия нагревает образец реагентов содержащийся в герметическом, микроволновом прозрачном контейнере. В закрытом, загерметизированном сосуде легко достигаются более высокие температуры, таким образом, чтобы увеличить показатель разложения. Давление и температура в закрытом сосуде могут быть проверены и управляемы в реальном времени, а также использоваться при определении суммы прикладной микроволновой энергии. Модули дополнительного сосуда позволяют подготавливаться многочисленным образцам тогда, когда завершенные подготовки охлаждаются.

Последовательность запуска СВЧ печей

Микроволновая печь включает в себя: магнетрон,

бортовые электронные интерфейсы для давления и температуры, программное обеспечение и покрытую полость печи. Выпускной модуль содержит выпускной вентилятор, входные и выходные разъемы и шланги (для связи в микроволновой печи). Управляющая система давления включает управляющий сенсор давления и управляющий интерфейс давления.

Программа Win Wave обеспечивает системное управление и получение данных вплоть до четырех микроволновых печей одновременно, при условии соответствующей конфигурацией IBM-совместимого компьютера и установленной на нем операционной системы Windows. Компьютер обеспечивает дистанционное управление СВЧ-печами.

Взаимоблокировка двери (зеленая, не зажжено), указывает, что дверь закрыта правильно. Зажженный зеленый свет указывает, что дверь закрыта неправильно и работают защитные блокировки. Защитные блокировки мешают магнетрону действовать. Зажженный желтый свет указывает, что магнетрон в работе.

Метод измерений и подготовка к выполнению измерений массовой доли золота атомно-абсорбционным методом

Измерение массовой доли золота в диапазоне от 0,02 до 10,0 мг/дм3 выполняется атомно-абсорбционным методом, основанным на следующем. Анализируемую пробу распыляют в пламя воздух-ацетилен и определяют наличие золота атомно-абсорбционным методом при максимуме светопоглощения 242,8 нм по сравнению с градуировочными растворами. Перед проведением измерений определяют кислотность среды исследуемого раствора при помощи универсальной индикаторной бумаги. Растворы, у которых

рН  5 анализируют без предварительной подготовки, а растворы, имеющие рН 5 раскисляют, для этого пипеткой с одной меткой отбирают аликвоту исследуемого раствора, помещают в мерную колбу, по каплям добавляют концентрированную хлористоводородную кислоту плотностью (от 1,17 до 1,19) г/см3 пока рН среды не станет равным 5, затем доливают водой до метки, тщательно перемешивают, при расчетах учитывают степень разведения по формуле:

      (1)

где V1 – объем аликвоты пробы, взятой для анализа, см3; V2 – объем колбы разведения, см3.

Если содержание золота в исследуемом растворе менее 0,5 мг/дм3 и рН исследуемого раствора  5, то делительную воронку вместимостью 250 см3 приливают с пипеткой с одной отметкой 100см3 исследуемого раствора, по каплям при помешивании добавляют хлористоводородную кислоту плотностью (от 1,17 до 1,19) г/см3  для создания среды рН=7 (среду контролируют по универсальной лакмусовой бумаге), затем приливают пипеткой с одной отметкой 5 см3 хлористоводородной кислоты плотностью (от 1,17 до 1,19) г/см3  и 10,0 см3 смеси для экстракции, перемешивают сжатым воздухом (от 3 до 5) мин., оставляют до полного расслаивания фаз, водную фазу отбрасывают, а органическую фазу сливают в бюкс. Одновременно с анализируемыми пробами ведут контрольную пробу, которая должна содержать все реактивы и не должна содержать определяемого элемента.

Проведение измерений концентрации золота атомно-абсорбционным методом

Для этого включают и настраивают атомно-абсорбционный спектрофотометр типа «Спектр» согласно инструкции по эксплуатации, при максимуме светопоглощения для золота = 242,8 нм в пламени ацетилен-воздух. Распыляют в пламя поочередно градуировочные растворы в режиме «Построение градуировочного графика». Градуировочный график должен быть прямолинейным и подчиняться закону Бугера-Ламберта-Бера. Переключают прибор в режим «Экспресс анализ» и распыляют в пламя анализируемые растворы, результат наблюдений (в мг/дм3) записывают в журнал для вычисления результата измерения. Полученные результаты приведены в табл. 1.

Обработка результатов измерений

Обработку результатов измерений массовой доли золота в жидкой фазе пульпы и технологических растворах сорбционного предела проводят следующим образом. Рассчитывают массовую долю золота в жидкой фазе пульпы и технологических растворах сорбционного передела (ХAu) в миллиграммах на литр по формуле:

     (2)

где С – содержание золота в анализируемом растворе, найденное по градуировочному графику, мг/дм3;

V1 – объем золота в анализируемом растворе, взятый для разведения, см3;

V – объем колбы для разведения, см3.

За результат измерения принимают среднее арифметическое двух незначимо различающихся результатов параллельных наблюдений. Допустимые расхождения между результатами параллельных наблюдений (сходимость) , результатами измерений (воспроизводимость)   при количестве параллельных наблюдений n=4 и доверительной вероятности Р = 0,95 в зависимости от диапазона массовой доли золота от 0,02 до 10,0 мг/дм3 не должны превышать величин, приведенных в табл. 2.

Контроль точности измерений

Контроль правильности результатов измерений проводят в соответствии с СТП 072.279 по стандартным образцам сравнения типа СЗХ-1 и СЗХ-2, соответствующим требованиям O’z DST 8.004-2004, методом добавок или иным метрологически обоснованным методом. Условием правильности результатов измерений компонентов в пробах, при использовании стандартных образцов, является выполнение неравенства (при доверительной вероятности Р=0,95)

      (3)

где П – показатель правильности результатов измерений - расхождение между аттестованным и измеренным значением стандартного образца;

dcx– допустимое расхождение между параллельными наблюдениями.

Условием правильности результатов измерений компонентов в пробах при использовании метода добавок, является выполнение неравенства (при доверительной вероятности Р = 0,95):

     (4)

где П - показатель правильности результатов измерений - расхождение между результатами измерений проб без добавки и с добавкой;

 - допустимые расхождения между результатами параллельных наблюдений в пробах без добавки;

- допустимые расхождения между результатами параллельных наблюдений проб с добавками.

Если:

     (5)

Контроль случайной составляющей погрешности воспроизводимости осуществляется сопоставлением относительных расхождений db

       (6)

где С1 и С2 – результаты, соответственно, основного и контрольного измерений.

Изучение применения СВЧ печей для разложения золотосодержащих проб в лабораторных условиях позволили нам:

- ознакомиться со способами управления PC с программным обеспечением;

- построить и исследовать график данных давления и температурных параметров в реальном времени;

- ознакомиться со встроенными системными диагностическими операциями для решения проблемы разложений золотосодержащих проб;

 - исследовать дистанционный контроль через РС, который увеличивает безопасность оператора и системную надежность,

и сделать следующие выводы:

- применение СВЧ печей для разложения золотосодержащих проб значительно уменьшает время подготовки образца;

- мощность, давление и температурные управляющие режимы имеют вплоть до десяти индивидуально программируемых этапов;

- программное обеспечение Windows допускает дистанционную операцию и управляется через RS-232-C на PC.

© Хайдарова З.Р., Музафаров А.М.

Список литературы:
1. Состояние вопроса и исследование перспектив применения СВЧ поля в процессах обогащения и металлургии руд. Про-межуточный отчет. Фонды ЦНИЛ НГМК. Навои-2001 г. -стр. 34.
2. Чантурия В. А. Современные проблемы обогащения минерального сырья в России. //Журнал обогащения руд» 2000 г., №6, с.3-8.
3. Колесник В.Г., Урусова Е.В. и др. Спекание вольфрамитовых концентратов с содой в полях СВЧ. //Цветные металлы. М.: 2001. №1., с .81-84.


 

А также другие работы, которые могут Вас заинтересовать

15420. Инфекция. Роль микроорганизма в инфекционном процессе. Патогенность и вирулентность. Экспериментальный (биологический) метод исследования. Бактериоскопическое и бактериологическое исследование трупного материала 35.5 KB
  ЗАНЯТИЕ 11 Тема занятия: Инфекция. Роль микроорганизма в инфекционном процессе. Патогенность и вирулентность. Экспериментальный биологический метод исследования. Бактериоскопическое и бактериологическое исследование трупного материала. ...
15421. Роль макроорганизма в инфекционном процессе. Неспецифические факторы защиты организма от инфекции 34 KB
  Занятие 12 Тема занятия: Роль макроорганизма в инфекционном процессе. Неспецифические факторы защиты организма от инфекции. Учебная цель занятия: Познакомиться с ролью макроорганизма в развитии инфекционного процесса. Задачи занятия: 1. Изучить факторы неспеци...
15422. Иммунитет. Взаимодействие антигена с антителом in vitro. Серологические реакции, их механизм. Прямые серологические реакции. Реакции агглютинации, преципитации 35 KB
  ЗАНЯТИЕ 13 Тема занятия: Иммунитет. Взаимодействие антигена с антителом in vitro. Серологические реакции их механизм. Прямые серологические реакции. Реакции агглютинации преципитации. Учебная цель занятия: Познакомиться с основами иммунодиагнос
15423. Непрямые серологические реакции. Реакция связывания комплемента (РСК). Реакция непрямой гемагглютинации (РНГА). Реакция нейтрализации токсина антитоксином (РН) 36.5 KB
  ЗАНЯТИЕ 14 Тема занятия: Непрямые серологические реакции. Реакция связывания комплемента РСК. Реакция непрямой гемагглютинации РНГА. Реакция нейтрализации токсина антитоксином РН. Учебная цель занятия: Продолжение знакомства с основами
15424. Лабораторные методы оценки функционального состояния Т- и В-систем иммунитета 42 KB
  ЗАНЯТИЕ 15 Тема занятия: Лабораторные методы оценки функционального состояния Т и Всистем иммунитета. Учебная цель занятия: Ознакомиться с основными методами лабораторных исследований Т и Всистем иммунитета значениями некоторых иммунолог
15425. Семинар. Иммунитет. Т- и В-системы иммунитета. Кооперация клеток в ходе иммунного ответа. Иммунологическая память. Иммунологическая толерантность 76.5 KB
  ЗАНЯТИЕ 16 Тема занятия: Семинар. Иммунитет. Т и Всистемы иммунитета. Кооперация клеток в ходе иммунного ответа. Иммунологическая память. Иммунологическая толерантность. Гиперчувствительность немедленного и замедленного типов. Иммунопатология. ...
15426. Бактериологическая лаборатория и правила работы в ней. Классификация микроорганизмов. Морфология бактерий. Методы определения вида микробов. Бактериоскопический метод. Техника микроскопирования с иммерсионной системой 58.5 KB
  ЗАНЯТИЕ 1 ТЕМА ЗАНЯТИЯ: Бактериологическая лаборатория и правила работы в ней. Классификация микроорганизмов. Морфология бактерий. Методы определения вида микробов. Бактериоскопический метод. Техника микроскопирования с иммерсионной системой. УЧЕБНАЯ ЦЕЛЬ ЗАНЯТ...
15427. Бактериоскопический метод. Простые и сложные методы окраски. Окраска по Граму. Структура бактериальной клетки. Методы выявления капсул, жгутиков, спор. Изучение микробов в живом состоянии 57 KB
  ЗАНЯТИЕ 2 ТЕМА ЗАНЯТИЯ: Бактериоскопический метод. Простые и сложные методы окраски. Окраска по Граму. Структура бактериальной клетки. Методы выявления капсул жгутиков спор. Изучение микробов в живом состоянии. УЧЕБНАЯ ЦЕЛЬ ЗАНЯТИЯ: Продолжить изучение бактериос
15428. Действие физических и химических факторов на микроорганизмы. Стерилизация. Методы стерилизации. Дезинфекция. Основные группы дезинфицирующих и антисептических веществ, механизм их антибактериального действия 67 KB
  ЗАНЯТИЕ 3 ТЕМА ЗАНЯТИЯ: Действие физических и химических факторов на микроорганизмы. Стерилизация. Методы стерилизации. Дезинфекция. Основные группы дезинфицирующих и антисептических веществ механизм их антибактериального действия. Физиология бактерий. Питание мик...