16813

Применение СВЧ печей для разложения золотосодержащих проб

Научная статья

География, геология и геодезия

УДК 622.765.063 Применение СВЧ печей для разложения золотосодержащих пробХайдарова З.Р. магистрант НГГИ; Музафаров А.М. начальник бюро ЦНИЛ НГМК Методов обогащения золотосодержащих проб применяемых в промышленности очень много и они разнообразны. В последнее время с появ

Русский

2013-06-25

63 KB

2 чел.

УДК 622.765.063

Применение СВЧ печей для разложения золотосодержащих проб
Хайдарова З.Р., магистрант НГГИ; Музафаров А.М., начальник бюро ЦНИЛ НГМК

Методов обогащения золотосодержащих проб применяемых в промышленности очень много и они разнообразны. В последнее время с появлением компактных и удобных программируемых СВЧ печей появилась надежда применения их для обогащения золотосодержащих проб [1-3].

СВЧ система является разносторонним, экономичным инструментом для подготовки образцов для атомно-абсорбционных, рентгеноспектральных и плазменно-спектральных анализов. Это метод разложения проб помогает уменьшить время подготовки образца более чем на 90% против стандартной горячей листовой техники [1]. Большой выбор компонентов для конкретных лабораторных потребностей, безопасность оператора, увеличение системотехники, надежность инструмента и удобство эксплуатации дает надежду в обеспечении необходимого спроса. СВЧ система, также, включает дистанционное системное управление через программное обеспечение Win Wave, чтобы гарантировать надежное и безопасное выполнение операций [2].

Учитывая вышеприведенное, исследование применения СВЧ печей для разложения золотосодержащих проб является актуальным. В этой статье обобщены некоторые результаты, полученные в лабораторных условиях.

Физические основы СВЧ обработки

Микроволновая энергия нагревает образец реагентов содержащийся в герметическом, микроволновом прозрачном контейнере. В закрытом, загерметизированном сосуде легко достигаются более высокие температуры, таким образом, чтобы увеличить показатель разложения. Давление и температура в закрытом сосуде могут быть проверены и управляемы в реальном времени, а также использоваться при определении суммы прикладной микроволновой энергии. Модули дополнительного сосуда позволяют подготавливаться многочисленным образцам тогда, когда завершенные подготовки охлаждаются.

Последовательность запуска СВЧ печей

Микроволновая печь включает в себя: магнетрон,

бортовые электронные интерфейсы для давления и температуры, программное обеспечение и покрытую полость печи. Выпускной модуль содержит выпускной вентилятор, входные и выходные разъемы и шланги (для связи в микроволновой печи). Управляющая система давления включает управляющий сенсор давления и управляющий интерфейс давления.

Программа Win Wave обеспечивает системное управление и получение данных вплоть до четырех микроволновых печей одновременно, при условии соответствующей конфигурацией IBM-совместимого компьютера и установленной на нем операционной системы Windows. Компьютер обеспечивает дистанционное управление СВЧ-печами.

Взаимоблокировка двери (зеленая, не зажжено), указывает, что дверь закрыта правильно. Зажженный зеленый свет указывает, что дверь закрыта неправильно и работают защитные блокировки. Защитные блокировки мешают магнетрону действовать. Зажженный желтый свет указывает, что магнетрон в работе.

Метод измерений и подготовка к выполнению измерений массовой доли золота атомно-абсорбционным методом

Измерение массовой доли золота в диапазоне от 0,02 до 10,0 мг/дм3 выполняется атомно-абсорбционным методом, основанным на следующем. Анализируемую пробу распыляют в пламя воздух-ацетилен и определяют наличие золота атомно-абсорбционным методом при максимуме светопоглощения 242,8 нм по сравнению с градуировочными растворами. Перед проведением измерений определяют кислотность среды исследуемого раствора при помощи универсальной индикаторной бумаги. Растворы, у которых

рН  5 анализируют без предварительной подготовки, а растворы, имеющие рН 5 раскисляют, для этого пипеткой с одной меткой отбирают аликвоту исследуемого раствора, помещают в мерную колбу, по каплям добавляют концентрированную хлористоводородную кислоту плотностью (от 1,17 до 1,19) г/см3 пока рН среды не станет равным 5, затем доливают водой до метки, тщательно перемешивают, при расчетах учитывают степень разведения по формуле:

      (1)

где V1 – объем аликвоты пробы, взятой для анализа, см3; V2 – объем колбы разведения, см3.

Если содержание золота в исследуемом растворе менее 0,5 мг/дм3 и рН исследуемого раствора  5, то делительную воронку вместимостью 250 см3 приливают с пипеткой с одной отметкой 100см3 исследуемого раствора, по каплям при помешивании добавляют хлористоводородную кислоту плотностью (от 1,17 до 1,19) г/см3  для создания среды рН=7 (среду контролируют по универсальной лакмусовой бумаге), затем приливают пипеткой с одной отметкой 5 см3 хлористоводородной кислоты плотностью (от 1,17 до 1,19) г/см3  и 10,0 см3 смеси для экстракции, перемешивают сжатым воздухом (от 3 до 5) мин., оставляют до полного расслаивания фаз, водную фазу отбрасывают, а органическую фазу сливают в бюкс. Одновременно с анализируемыми пробами ведут контрольную пробу, которая должна содержать все реактивы и не должна содержать определяемого элемента.

Проведение измерений концентрации золота атомно-абсорбционным методом

Для этого включают и настраивают атомно-абсорбционный спектрофотометр типа «Спектр» согласно инструкции по эксплуатации, при максимуме светопоглощения для золота = 242,8 нм в пламени ацетилен-воздух. Распыляют в пламя поочередно градуировочные растворы в режиме «Построение градуировочного графика». Градуировочный график должен быть прямолинейным и подчиняться закону Бугера-Ламберта-Бера. Переключают прибор в режим «Экспресс анализ» и распыляют в пламя анализируемые растворы, результат наблюдений (в мг/дм3) записывают в журнал для вычисления результата измерения. Полученные результаты приведены в табл. 1.

Обработка результатов измерений

Обработку результатов измерений массовой доли золота в жидкой фазе пульпы и технологических растворах сорбционного предела проводят следующим образом. Рассчитывают массовую долю золота в жидкой фазе пульпы и технологических растворах сорбционного передела (ХAu) в миллиграммах на литр по формуле:

     (2)

где С – содержание золота в анализируемом растворе, найденное по градуировочному графику, мг/дм3;

V1 – объем золота в анализируемом растворе, взятый для разведения, см3;

V – объем колбы для разведения, см3.

За результат измерения принимают среднее арифметическое двух незначимо различающихся результатов параллельных наблюдений. Допустимые расхождения между результатами параллельных наблюдений (сходимость) , результатами измерений (воспроизводимость)   при количестве параллельных наблюдений n=4 и доверительной вероятности Р = 0,95 в зависимости от диапазона массовой доли золота от 0,02 до 10,0 мг/дм3 не должны превышать величин, приведенных в табл. 2.

Контроль точности измерений

Контроль правильности результатов измерений проводят в соответствии с СТП 072.279 по стандартным образцам сравнения типа СЗХ-1 и СЗХ-2, соответствующим требованиям O’z DST 8.004-2004, методом добавок или иным метрологически обоснованным методом. Условием правильности результатов измерений компонентов в пробах, при использовании стандартных образцов, является выполнение неравенства (при доверительной вероятности Р=0,95)

      (3)

где П – показатель правильности результатов измерений - расхождение между аттестованным и измеренным значением стандартного образца;

dcx– допустимое расхождение между параллельными наблюдениями.

Условием правильности результатов измерений компонентов в пробах при использовании метода добавок, является выполнение неравенства (при доверительной вероятности Р = 0,95):

     (4)

где П - показатель правильности результатов измерений - расхождение между результатами измерений проб без добавки и с добавкой;

 - допустимые расхождения между результатами параллельных наблюдений в пробах без добавки;

- допустимые расхождения между результатами параллельных наблюдений проб с добавками.

Если:

     (5)

Контроль случайной составляющей погрешности воспроизводимости осуществляется сопоставлением относительных расхождений db

       (6)

где С1 и С2 – результаты, соответственно, основного и контрольного измерений.

Изучение применения СВЧ печей для разложения золотосодержащих проб в лабораторных условиях позволили нам:

- ознакомиться со способами управления PC с программным обеспечением;

- построить и исследовать график данных давления и температурных параметров в реальном времени;

- ознакомиться со встроенными системными диагностическими операциями для решения проблемы разложений золотосодержащих проб;

 - исследовать дистанционный контроль через РС, который увеличивает безопасность оператора и системную надежность,

и сделать следующие выводы:

- применение СВЧ печей для разложения золотосодержащих проб значительно уменьшает время подготовки образца;

- мощность, давление и температурные управляющие режимы имеют вплоть до десяти индивидуально программируемых этапов;

- программное обеспечение Windows допускает дистанционную операцию и управляется через RS-232-C на PC.

© Хайдарова З.Р., Музафаров А.М.

Список литературы:
1. Состояние вопроса и исследование перспектив применения СВЧ поля в процессах обогащения и металлургии руд. Про-межуточный отчет. Фонды ЦНИЛ НГМК. Навои-2001 г. -стр. 34.
2. Чантурия В. А. Современные проблемы обогащения минерального сырья в России. //Журнал обогащения руд» 2000 г., №6, с.3-8.
3. Колесник В.Г., Урусова Е.В. и др. Спекание вольфрамитовых концентратов с содой в полях СВЧ. //Цветные металлы. М.: 2001. №1., с .81-84.


 

А также другие работы, которые могут Вас заинтересовать

68398. Теплопередача через однослойную цилиндрическую стенку (Г.У. 3-го рода) 218.5 KB
  Плотность теплового потока на внутренней и наружной поверхности оболочки определяется следующими формулами - коэффициент теплопередачи отнесенный к внутренней поверхности цилиндрической оболочки. На практике часто встречаются оболочки толщина стенок которых мала по сравнению с внешним диаметром.
68399. Измерение технологических параметров 396 KB
  Первичный преобразователь датчик сенсор наиболее многочисленная группа преобразователей предназначенных для измерения состояния окружающей среды и диагностики. Для оценки количественного значения температуры используют температурные шкалы имеющие начало отсчета ноль...
68400. Типы интенсификации теплопередачи 97.5 KB
  Снижение термического сопротивления всегда ведет к увеличению, однако этот путь не всегда возможен т.к. толщина стенки и материал из которого она изготовлена часто диктуется соображениями стойкости. Однако не следует забывать о этом способе интенсификации при эксплуатации...
68402. Элементарные измерительные преобразователи 153 KB
  Однако элементарные преобразователи и измерительные приборы обычно не обеспечивают требуемых метрологических характеристик преобразования: малой погрешности стабильности линейности чувствительности а также достаточной мощности выходного сигнала.
68403. Промежуточные (вторичные, нормирующие) преобразователи 145.5 KB
  Метод уравновешивающего преобразования характеризуется тем что в приборах используется две цепи преобразования: прямая и обратная роли которых резко отличаются. Цепь прямого преобразования служит для обнаружения степени неравновесия.
68404. Автоматические регуляторы 562 KB
  Регулирующее воздействие формируется в зависимости от заданного значения величины регулируемого параметра Регулирующее воздействие формируется в результате автоматического поиска т. Недостаток: сложность принципиальной электрической схемы регулирования что предъявляет повышенные требования...
68405. Исполнительные механизмы и регулирующие органы 561.5 KB
  Исполнительный механизм преобразует выходной сигнал регулятора в перемещение регулирующего органа. ИМ должен сохранять равенство между перемещением выходного элемента и рабочим ходом штока затвора регулирующего органа.