16820

Структуры экранирования вулканогенных золоторудных месторождений

Научная статья

География, геология и геодезия

УДК 553 Структуры экранирования вулканогенных золоторудных месторожденийСулейманов М.О. старший научный сотрудник сектора благородных металлов Восточного Узбекистана ИМР ГОСКОМГЕО РУз; Поморцев В.В. главный геолог ОАО Шаркий Курама ГОСКОМГЕО РУз; Прутик Е.В. техн

Русский

2013-06-25

82.5 KB

2 чел.

УДК 553

Структуры экранирования вулканогенных золоторудных месторождений
Сулейманов М.О., старший научный сотрудник сектора благородных металлов Восточного Узбекистана ИМР ГОСКОМГЕО РУз; Поморцев В.В., главный геолог ОАО “Шаркий Курама” ГОСКОМГЕО РУз; Прутик Е.В., техник сектора благородных металлов Восточного Узбекистана ИМР ГОСКОМГЕО РУз; Мирзаева Г.А., главный геолог карьера Саукбулак ОАО «АГМК»

Вулканогенное гидротермальное месторождение - замкнутый, ограниченный в пространстве участок земной коры в пределах геотермальных аномалий, доступный для длительной циркуляции водозных вод в условиях постоянного или периодического общения магматического очага с поверхностью в виде извержений и субвулканических проявлений.

Активный тектоно-магматический режим развития, пестрый состав рудовмещающих пород обуславливает многообразие структурных морфотипов рудных тел, в формировании которых ведущую роль играют структуры экранирования (СЭ). Если структуры блокирования (СБ) (Шихин Ю. С, 1987 г.) влияют на распределение рудных тел по латерали, то структуры экранирования осложняют эту картину по вертикали [1].

Экранирующими поверхностями (ПЭ) являются подошвы разновозрастных пород (свит, формаций, вулканогенных комплексов), а также контакты пород с различными физико-механическими свойствами.

ПЭ осложнены тектоническими подвижками, минерализованными зонами, вплоть до мономинеральных скоплений, проявившихся не всегда четко на контактах формаций свит, чаще между породами с различными физико-механическими свойствами в контактовой зоне.

Минерализованные зоны, связанные с ПЭ, называются межформационными (МФ), вторые - внутриформационные (ВФ).

В систематизации разрывных нарушений по углам падения (Шехтман П А, 1968 г.) тектонические разрывы положе 50 градусов не относятся к секущим. Поэтому возник ещё один термин - пологие структуры экранирования [2].

Сложно выглядит морфология внутреннего строения минерализованных зон, где помимо зон окварцевания, параллельных ограничивающим зону контактам, есть серия прожилков противоположного направления; образуется штокверковоподобная зона. Это, плюс не везде пологое залегание зоны и не всегда четкая приуроченность к контакту, является причиной неправильного понимания структур экранирования и, как следствие, изучения их как секущих образований.

В зависимости от взаимоотношения секущего разлома и контакта выделяются два типа структур - замыкания и пересечения. В первом типе (рис. 1, А-Ж) основная минерализация локализована под ПЭ, а выше на продолжении секущего разлома при пострудных подвижках возникает зона трещиноватых пород слабо измененных, часто инъецированная тонкими прожилками. Если подэкранная толща неоднородна, то внутри неё под подошвами различных по составу и физико-механическим свойствам пород возникают внутриформационные зоны метасоматитов, аргиллизитового состава (рис. 1, Ж-3). Все это можно рассматривать как элементы единой зоны - зоны пропаривания (ЗП). Геохимические ореолы ЗП аналогичны таковым в рудовмещающих породах. Если они моложе основного оруденения, то геохимия аномалий и минерализация ЗП характерна для поздних этапов минералообразований и медно-висмутовой формации и позднего убого-золоторудного этапа минерализации. Их нельзя увязывать в единую геохимическую колонку с рудогенными ореолами без учета эффекта экранирования и наложения поздней минерализации по одним и тем же рудоконтролирующим структурам.

Полного замыкания рудоконтролирующего разлома ПЭ на изученных золоторудных объектах Кураминской подзоны не выявлено. Единственное, что можно констатировать уверенно - это отсутствие реальных рудных тел выше последней ПЭ - основание вулканитов шурабсайского комплекса.

Из-за сложного распределения оруденения в пределах СЭ второго типа подавляющее большинство рудных тел локализовано в зоне сопряжения, как в рудоконтролирующей структуре, так и в подэкранной поверхности, образуя сложные, в целом, грибообразные и флексурообразные тела (рис. 1, Ж-3).

Часто оруденение локализуется только в рудоконтролирующей структуре, не минерализуя ПЭ вплоть почти до полного, постепенного выклинивания при приближении к ней (рис. 1, Г).

На месторождении Чашма-Динар PC при приближении к ПЭ распадается на ряд субпараллельных рудных тел, которые с глубиной сопрягаются, образуя в 40 м от ПЭ единое рудное тело.

Зависимость содержания золота от углов падения зон окварцевания индивидуальна для каждого месторождения. На участке Самарчук благоприятными для концентрации являются углы 40-45°, на участке Чумаук находящемся в 1,5 км восточнее - 10-15°, на месторождении Каульды - 5-0¸5°. Ещё шире разброс на месторождении Гузаксай Чадакского рудного поля - от 5° до 40°, даже в пределах одного участка (Южный Гузаксай, Акбулак).

На распределение золоторудных концентрации как в экранирующих, так и в секущих разломах, влияние оказывают особенности подстилающих пород. В Алмалыкском рудном районе они тяготеют к участкам, где вулканиты подстилаются богатыми органикой и Au карбонатной толщей Каратагатинской и Катрангинской свит Д3. В Кайрагачском рудном поле более 80% рудных тел в СЭ локализованы в породах C2-3nd23.

Состав метасоматитов СЭ в зависимости от подстилающих пород колеблется от почти монокварцитового (SiO2 - 80-85%) на гранитоидах C2k до кварц-карбонатного (SiO2 - 30-40%, CaO-MgO - до 60%) на карбонатных породах Д3-C1.

Сложные морфотипы рудовмещающих структур возникают при пересечении секущего разлома и ПЭ.

Наиболее простые варианты минерализации распространяются по секущей рудоконтролирующей структуре, за пределами ПЭ образуя минерализованные зоны, как в подэкранной позиции, так и вдоль поверхности экранирования.

Сложные морфотипы рудных тел возникают в случаях, когда ПЭ 2 или больше. Формируются флексурообразные РТ, воронкообразные: как конусом вверх, так и конусом вниз. Очень сложное распределение оруденения выявлено в Гузаксайском разломе на участке Южный месторождения Гузаксай, где на распределение оруденения влияли оба типа структур экранирования и блокирования.

Структуры экранирования являются наиболее подвижными в общей системе структур рудного поля. Все гидротермальные эксплозивные сооружения в рудных полях начинают локализоваться в подэкранной позиции. Подвижки по СЭ приводят к резкому  изменению  режима  Р-Т  в  гидротермальной системе, что обуславливает внутренние эксплозии в ней.

СЭ вследствие своей подвижности почти всегда инъецированы силлами. Некоторые из них образуют лаколлитоподобные тела, подошва и кровля которых представляют экранирующие поверхности. Таким является контакт между гранодиоритами C2k, на которых фрагментарно сохранились вулканомиктовые породы C1-2 mb, и вулканитами C2-P1 на месторождении Пирмираб Чадакского рудного поля. В эту полость внедрилась сложная по составу многофазная интрузия куяндинских вулканитов, образовав лаколлит. Масштабные тектонические движения по СЭ формируют сложные шарьяжные зоны, по которым происходят значительные подвижки. В своем развитии шарьяжи пересекаются с рудоконтролирующими разломами и становятся не только рудовмещающими и рудораспределяющими по отношению к разломам выше шарьяжа (Кайрагачское рудное поле, Шаугазский надвиг).

Таким образом, структура экранирования - геологическое образование, возникшее на контакте разновозрастных и отличных по физико-механическим свойствам пород, часто выполненное магматическими образованиями, контролирующее развитие метасоматоза различной степени интенсивности вплоть до мономинеральных, влияющих на распределение оруденения.

Составные элементы структур экранирования в обобщенном виде отражены на рис. 2.

Следует выделить: полость экранирования, метасоматиты и рудные тела в ней; рудоподводящий разлом. Недостаточная изученность их при поисках и разведке ведет к недооценке ресурсов, как следствие к недоизвлечению полезного ископаемого из недр.

Параметры рудных тел локализуются в СЭ и зависят от параметров структурообразующих элементов. Протяженность по падению и простиранию рудных тел от линии сопряжения колеблется в пределах 10-60 м.

Методика поисков и разведки этих структур сложна и должна базироваться на их морфологии и конкретных параметрах элементов структур [3]. Структуры экранирования на золоторудных вулканогенных месторождениях играют ведущую роль в размещении рудных тел и локализуют значительные количества оруденения. Образуя сложные сочетания с секущими рудоподводящими разломами, они часто остаются недоизученными, что приводит к неполному извлечению полезного ископаемого из недр. Основой методики оценки рудоносности этих структур является геометризация элементов структуры.

© Сулейманов М.О., Поморцев В.В, Прутик Е.В, Мирзаева Г.А.

Список литературы:
1. Королев A.В., Шехтман П.А. Структурные условия размещения послемагматических руд. Москва “Недра”, 1965, с. 73.
2. Шехтман П.А. Принципы и методы разведки эндогенных месторождений. Доклад на сессии НТС. МИНГЕО СССР. Ташкент, 1968.
3. Шихин Ю. С. Геологическое картирование и оценка рудоносности разрывных нарушений. Москва “Недра”, 1991, с. 165-167.


 

А также другие работы, которые могут Вас заинтересовать

27159. Световые волны и оптические системы 184.5 KB
  Кроме того колебания векторов Ē и Н происходит строго синхронно и во взаимно перпендикулярных направлениях рис. Поперечные волны обладают изначальным по самой природе им присущим свойством называемым поляризацией. Если на этой плоскости выбрать произвольно некоторую систему координат XY то линейно поляризованный свет будет иметь вид отрезка прямой под определенным углом α к одной из выбранных осей рис. Однако линейная поляризация монохроматической волны наблюдается только тогда когда разность фаз φ между составляющими X и Y суммарного...
27160. Выделение цифрового сигнала и импульсов тактовой синхронизации 192 KB
  Среди таких причин можно назвать следующие: нестабильность мощности записывающего лазера вызывающая разброс размеров длины и ширины формируемых пит; нестабильность мощности воспроизводящего лазера; ограниченность и нелинейность амплитудночастотной характеристики тракта оптического воспроизведения; нелинейность фазочастотной характеристики тракта; неравномерность распределения мощности света в пределах пятна; наличие дифракции на питах; ограниченность апертуры входного зрачка объектива; неравномерность толщины...
27161. Варианты формата CD 221 KB
  Однако значительная информационная ёмкость нового носителя 740 Мбайт навела специалистов на мысль использовать его в качестве элемента постоянной памяти для хранения архивных данных. Каждый кадр как уже описывалось в главе 3 содержит в себе 24 исходных информационных символа байта. В формате CDROM эти 24 символа являются обезличенными и могут нести в себе какую угодно информацию лишь бы она была преобразована в двоичную форму и организована в байты. Изза наличия этой избыточности диск CDROM имеет меньшую информационную ёмкость до...
27162. Digital Versatile Disc (DVD) 187 KB
  Digital Versatile Disc DVD 12. История появления DVD К концу 1994 года в технической прессе стали появляться сообщения о том что известный тандем SONY PHILIPS подаривший миру технологию CD готов представить на суд потребителю еще более совершенный носитель идеально подходящий для записи информации практически любого характера. В процессе работы над новым носителем несколько раз менялось его название отражая основные намерения разработчиков на том или ином этапе: MMCD MultiMediaCD; HDDVD High Density Digital Video Disc; HDCD...
27163. Система магнитооптической записи звука «Минидиск» 224.5 KB
  Звуковые характеристики Число каналов Детонации 2 или 1 отсутствуют Формат данных Частота дискретизации кГц Кодирование сжатие данных Модуляция канальный код Система защиты от ошибок 441 ATRAC EFM 814 ACIRC Оптические характеристики Длина волны излучения лазера нм Числовая апертура объектива Мощность излучения лазера при записи мВт Метод записи 780 045 25 50 главный пучок Модуляция магнитного поля 11. В общем случае магнитооптический эффект это изменение оптических свойств вещества в зависимости от его...
27164. СИСТЕМА ЦИФРОВОЙ МАГНИТНОЙ ЗАПИСИ ЗВУКА R-DAT 182.5 KB
  Описание формата RDAT Rotary Head Digital Audio Tape Recorder это система цифровой звукозаписи на магнитную ленту шириной 381 мм равную ширине ленты в обычной аналоговой компакткассете с помощью вращающихся головок. В отличие от формата CD здесь предусмотрено не только воспроизведение программ но и возможность их записи с высоким качеством. Режим I предназначен для записи и воспроизведения программ с частотой дискретизации 48 кГц при 16 разрядном линейном квантовании.
27165. Система защиты от ошибок 494.5 KB
  В магнитофонах формата RDAT так же как и в формате CD для борьбы с искажениями используется комплексная система защиты от ошибок включающая в себя два кода РидаСоломона С1[3228] и С2[3226] и двунаправленный способ перемежения данных. Проверочная матрица НР кода С1 показана на рисунке 9 а расположение символов внутри кодового слова задано векторстолбцом VP показанным на рисунке 10. Порождающий многочлен GPX этого кода имеет вид: или Поскольку кодовое слово кода С1 содержит четыре проверочных символа то этот код способен...
27166. КАНАЛЬНОЕ КОДИРОВАНИЕ 108.5 KB
  Считается что если после такого преобразования число канальных бит высокого уровня равно числу канальных бит низкого уровня то постоянная составляющая всей комбинации будет равна нулю DSV = 0. Оставшиеся 103 комбинации пришлось выбрать из тех которые имеют ненулевое значение DSV. Однако вместо одной 10разрядной комбинации каждому из этих 103 8разрядных символов поставлены в соответствие две отличающиеся друг от друга только знаком DSV. Одна из них имеет значение DSV = 2 другая DSV = 2.
27167. СЛУЖЕБНАЯ ИНФОРМАЦИЯ 172 KB
  Эта информация кроме специально отведенной для нее зоны данных субкода размещается еще и в символах кода идентификации ID которые имеют место в начале каждого блока как в зоне данных ИКМ W1 и W2 так и в зоне данных субкода SW1 и SW2. Служебная информация размещаемая в зоне данных субкода может переписываться и дописываться независимо от музыкальной информации записанной в ИКМзоне. Изменить ее не изменяя основных данных невозможно. Это та информация которая записана в символах W1 и W2 кода идентификации ID зоны ИКМданных.