16844

ПАТОФИЗИОЛОГИЯ МОЗГОВОГО КРОВООБРАЩЕНИЯ

Научная статья

Медицина и ветеринария

П. РАВУССИН Д. БРАККО. ПАТОФИЗИОЛОГИЯ МОЗГОВОГО КРОВООБРАЩЕНИЯ. Отделение анестезиологии университетской клиники г. Лозанна Швейцария Большое количество церебральных процессов может вести к необратимому повреждению. Эти процессы могут быть классифицированы как трав...

Русский

2013-06-26

22.04 KB

4 чел.

П. РАВУССИН, Д. БРАККО. ПАТОФИЗИОЛОГИЯ МОЗГОВОГО КРОВООБРАЩЕНИЯ. Отделение анестезиологии университетской клиники г. Лозанна, Швейцария

Большое количество церебральных процессов может вести к необратимому повреждению. Эти процессы могут быть классифицированы как травматические, инфекционные, воспалительные и опухолевые. Они могут быть первичными или вторичными по отношению к уже поврежденному мозгу. Все эти процессы имеют общие пути, приводящие к повреждению мозга: они создают нарушение баланса между потреблением мозгом кислорода и его поступлением и тем самым вызывают формирование диффузной или очаговой церебральной гипоксии и ишемии. В связи с этим знание патофизиологии мозгового кровообращения представляется весьма важным.

Вторичные повреждения мозга обнаруживаются у 90% пострадавших с черепно-мозговой травмой (ЧМТ); у 80% больных, погибших в результате травматического повреждения головного мозга, при специальных патологоанатомических исследованиях выявляются признаки ишемического повреждения. Поэтому проблема адекватного гемодинамического обеспечения мозга у пострадавших с тяжелой ЧМТ представляется особенно важной.

ФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ

Мозговой кровоток (МК) находится в строгом соответствии с потреблением кислорода мозгом. В покое он поддерживается на уровне около 50 мл/мин/на 100 гр ткани мозга, несмотря на возможные значительные колебания значений среднего артериального давления (ср. АД). При снижении ср. АД развивается вазодилятация мозговых сосудов, а при гипертензии, наоборот, происходит их вазоконстрикция. Этот процесс, именуемый ауторегуляцией, необходим для поддержания локальных значений напряжения СО2 постоянными. Ауторегуляция имеет два основных компонента: быстро реагирующую регуляторную систему, работающую через РСО2, которая требует всего от 30 секунд до 30 минут для приведения сосудистой системы к исходному состоянию. Эта система базируется на эффекте метаболических медиаторов, таких, как дериваты арахидоновой кислоты, АТФ, рН и др. Поэтому острые сдвиги артериального давления все же приводят к временным сдвигам МК. Пределы ауторегуляции варьируют от 50 до 150 мм рт.ст. (указаны значения церебрального перфузионного давления ЦПД) для нормотоника и до более высоких величин нижнего и верхнего пределов ауторегуляции у гипертоника. Более того, регионарные кривые ауторегуляции могут так же существенно отличаться: например, в мозговой ткани, окружающей артериовенозную мальформацию, кривая ауторегуляции смещена влево в результате хронически сниженного перфузионного давления. Ряд факторов способны нарушать ауторегуляцию МК: два из них являются особенно важными это РСО2 и ингаляционные анестетики. СО2 является наиболее сильным церебральным вазодилятатором. При изменении РаСО2 с 20 до 80 мм рт.ст. МК увеличивается от 50 до 200% от нормальных величин. Подавляющее большинство ингаляционных анестетиков являются вазодилятаторами, приводя к увеличению внутричерепного объема крови и повышению внутричерепного давления (ВЧД). С другой стороны, внутривенные анестетики (тиопентал натрия, этомидат, пропофол) являются церебральными вазоконстрикторами. Когда церебральная вазореактивность нарушена, вазодилятирующие препараты могут увеличивать МК в неповрежденных участках мозга, снижая тем самым МК в поврежденных зонах (так называемый феномен сосудистого обкрадывания), в то же время препараты, обладающие вазоконстрикторным эффектом, увеличивают МК именно в пораженных отделах мозга (так называемый феномен Робин-Гуда).

Когда фокальный или общий МК снижается, развитие ишемии зависит уже от продолжительности снижения МК и уровня метаболических потребностей мозга. При кровотоке свыше 25 мл/мин/100 г ткани церебральная структура и функция остаются интактными. В пределах от 25 до 20 мл/мин/100 г ткани кровоток достаточен для поддержания церебральных структур, но функция нейронов уже начинает страдать. В этой ситуации при восстановлении нормальных значений МК функция немедленно восстанавливается. Зоны с таким кровотоком получили название опенлюцидап (оPenluzidaп). При снижении менее ишемического порога, равного 20 мл/мин/100 г ткани, выживаемость нейрональных клеток является прямой функцией продолжительности ишемии. Если продолжительность ишемии превышает возможную толерантность нейронов, запасы клеточных энергосубстратов и метаболитов иссякают, нарушаются клеточные мембранные потенциалы, возникают трансмембранные ионные потоки и как финал нейрональная гибель (зона опенумбрып оPenumbrap).

Содержимое полости черепа является суммой мозговой паренхимы, объема цереброспинальной жидкости и крови, находящейся в сосудах мозга. Этот объем заключен в замкнутом пространстве полости черепа, в котором даже небольшое увеличение одного из компонентов способно вызвать выраженное повышение внутричерепного давления (ВЧД). Церебральный интерстициальный отдел контролируется астроцитами, и их плотный контакт вокруг сосудов мозга, как признается в настоящее время, является главной структурой гематоэнцефалического барьера (ГЭБ). ГЭБ в норме непроницаем для электролитов, и благодаря осмотическим силам происходит уравновешивание между кровью и мозгом. Следовательно, нормальный объем мозгового вещества в физиологических условиях контролируется величиной осмотического давления плазмы крови. Клетки мозга являются резистентными к сдвигам осмотического давления благодаря эффективным адаптационным механизмам, которые обеспечивают коррекцию объема нейронов в течение нескольких минут. При повреждении мозга повреждается и ГЭБ и вода проникает через него по простому градиенту гидростатических давлений.

Объем цереброспинальной жидкости (ЦСЖ) пассивно контролируется скоростями продукции и резорбции, равными 0,35 мл/мин. Скорость продукции является пропорциональной градиенту давлений между артериями и ЦСЖ, но зависит также от сопротивления фильтрации. ЦСЖ пассивно реабсорбируется в венозном отделе сосудистой системы мозга. Скорость резорбции зависит от градиента давлений ЦСЖ/вена и сопротивления резорбции. Градиент давления между ЦСЖ и венозным отделом сосудистой системы получил название эффективного давления ЦСЖ. Увеличение объема ЦСЖ может быть результатом увеличения скорости продукции или снижения скорости резорбции. Венозная гипертензия и увеличение сопротивления резорбции (вызванное наличием крови как при субарахноидальном кровоизлиянии или белков воспаления как при инфекционных процессах) являются наиболее частыми причинами как острого так и хронического увеличения объема ЦСЖ.

Внутричерепной объем крови подразделяется на венозный отдел составляет около 75% всего объема крови, 5% объема приходится на долю капилляров и 20% на долю артерий. Величина внутричерепного объема крови контролируется главным образом сосудистым тонусом: вазоконстрикция, как при гипокапнии или контролируемой гипертензии, ведет к снижению внутричерепного объема крови.

Когда имеет место увеличение объема ткани мозга, все другие компоненты интракраниальной системы имеют тенденцию к уменьшению для компенсации этого увеличения: например, увеличение объема мозгового вещества компенсируется уменьшением объема ЦСЖ посредством ее перемещения в спинальный отдел. Церебральное венозное давление неодинаково во всех отделах венозной системы: венозные синусы мозга имеют толстые фиброзные стенки и таким образом они защищены от сдвигов ВЧД. Давление в синусах мозга таким образом зависит в основном от экстрацеребрального венозного давления. Паренхимальные мозговые вены более чувствительны к внешней компрессии окружающей мозговой тканью при повышении ВЧД.

ЦПД является градиентом между средним АД и ВЧД или венозным давлением (последние два показателя близки по величине и могут использоваться в равной степени).

КОНЦЕПЦИЯ УПРАВЛЯЕМОЙ ГИПЕРТЕНЗИИ

Эта концепция, предложенная Rosner, основана на представлениях об ауторегуляции мозгового кровотока. У больных с повреждением мозга снижение ЦПД ведет к церебральной вазодилятации, увеличению внутричерепного объема крови и к дальнейшему увеличению ВЧД. Чтобы воспрепятствовать этому процессу, добиваются увеличения среднего АД, что ведет к увеличению ЦПД и сужению сосудов мозга. Эта вазоконстрикция ведет к уменьшению внутричерепного объема крови, что далее приводит к снижению ВЧД и еще более повышает ЦПД. Этот терапевтический подход с помощью создания предпосылок для вазоконстрикции в неповрежденных отделах мозга, ведет к увеличению перфузии в его поврежденных отделах (феномен Робин-Гуда). Клинически это реализуется увеличением объема циркулирующей плазмы и применением вазопрессоров, если в них есть необходимость. Однако следует подчеркнуть, что управляемая гипертензия оказывает положительный эффект при сохранности механизмов ауторегуляции МК и гипертензия не должна выходить за пределы ауторегуляции для данного больного, т.е. от 80 до 100 мм рт.ст. (по ЦПД).

КОНЦЕПЦИЯ ЛУНДА

Эта концепция применима для больных с крайне тяжелыми церебральными повреждениями, которые протекают с утратой механизмов ауторегуляции МК и/или реактивности на СО2. При этом также допускается прорыв ГЭБ с проницаемостью его для электролитов. В этой ситуации перемещение жидкости через мембраны зависит от градиента гидростатических давлений между церебральными капиллярами и интерстицием. У этих больных, когда механизмы ауторегуляции не работают, среднее АД передается непосредственно на мозговые капилляры и образование отека является пропорциональным градиенту давлений артерии/интерстиций. Период управляемой артериальной гипотензии в этой ситуации должен поддерживаться до восстановления функции ГЭБ. Более того, для уменьшения внутричерепного объема мозга применяются селективные венозные вазоконстрикторы, такие, как дигидроэрготамин. В кратком изложении концепция Лунда включает в себя гиповолемию и гипотензию в сочетании с поддержанием адекватного коллоидного давления и применением дигидроэрготамина.

ОБСУЖДЕНИЕ

Концепция управляемой гипертензии и концепция Лунда представляются на первый взгляд полностью противоположными. Концепция Rosner'a применима к больным с сохраненными механизмами ауторегуляции МК и реактивностью сосудов на СО2, в условиях мониторинга ВЧД, в то время как при концепции Лунда принимается за основу, тот факт, что и вазореактивность на СО2 и ауторегуляция МК глубоко нарушены. Эти концепции применимы в двух принципиально различных патофизиологических ситуациях и, соответственно, у разных больных или, как минимум, на разных фазах эволюции заболевания. Естественно, что для правильного выбора тактики крайне важным является ответ на вопрос сохранена или нет ауторегуляция МК у больного, что вполне решаемо на современном этапе развития диагностики.

ЗАКЛЮЧЕНИЕ

Концепция управляемой гипертензии имеет целью включение вазоконстрикторных каскадов, ведущих к уменьшению внутричерепного объема крови в неповрежденных отделах мозга и, таким образом, к увеличению МК в зонах, окружающих очаг повреждения. Концепция Лунда направлена на уменьшение образования отека в поврежденных отделах мозга главным образом за счет снижения капиллярного гидростатического давления. Эти два подхода являются взаимодополняющими, а не взаимоисключающими и основаны на различных патофизиологических механизмах. Понимание патофизиологии мозгового кровообращения является, таким образом, важным моментом для выбора адекватной терапии в этих клинических ситуациях.


 

А также другие работы, которые могут Вас заинтересовать

20195. Мокрые пылеулавливающие аппараты (скрубберы) 52.5 KB
  Очистка газов от газообразных загрязнений Все методы очистки газов от газообразных загрязнений делятся на три группы: Абсорбция это поглощение газа в объёме твёрдого или жидкого поглотителя чаще всего жидкости. Адсорбция это поглощение газа на поверхности твёрдого или жидкого поглотителя. Скорость переноса поглощаемого газа определяется: Свободной поверхностью абсорбента. Площадь абсорбирующей поверхности зависит: От количества орошающей жидкости на единицу объёма газа.
20196. Механические методы очистки сточных вод 1.35 MB
  При рекуперации из сточных вод извлекаются и перерабатываются ценные вещества. Механические методы очистки сточных вод Делятся на три группы: Процеживание. Рисунок вертикального отстойника: Вода подаётся в отстойник через трубу 1 затем движется вниз по кольцевому каналу который образован цилиндрическим корпусом 2 и цилиндрической перегородкой 3.
20197. Методы очистки сточных вод 101 KB
  Утилизация и обезвреживание твёрдых отходов. У нас существует два основных препятствия такому строительству: Необходимы дотации государства Отсутствие сортировки отходов Промышленные твёрдые отходы утилизируются и захораниваются на специальных полигонах. Полигон разделяется на несколько секторов: Сектор для захоронения органических отходов Сектор для захоронения гальванических отходов Сектор для захоронения особо токсичных отходов которые подлежат захоронению в герметических бетонных и металлических контейнерах Сектор для захоронения...
20198. Экология и инженерная охрана природы 44.5 KB
  Экология наука об отношении организма или групп организмов к окружающей среде в соответствии с уровнем организации окружающей жизни. Задачи экологии применительно к деятельности инженернопромышленных предприятий: Оптимальные технологические инженерные и проектноконструкторские решения исходя их минимального ущерба окружающей среде и здоровью человека. Прогноз и оценка возможных отрицательных последствий и действий проективноконструкторских предприятий или технологических процессов для окружающей среды. Своевременное выявление и...
20199. Экологические факторы и их действия 945.5 KB
  Экологические факторы делятся на две категории: Факторы неживой природы или абиотические факторы. Факторы живой природы или биотические факторы. Абиотические факторы в свою очередь делятся на: Климатические освещённость температура влажность атмосферное давление скорость движения ветра Почвенногрунтовые плотность механический состав влагоёмкость воздухопроницаемость Орографические рельеф высота над уровнем моря Химические газовый состав воздуха количество растворённых в воде солей и т.
20200. Популяция, её структура и динамика 350 KB
  Стрелки это каналы передачи вещества энергии и информации. Этот процесс идёт с поглощением энергии которая запасается в химических связях органического вещества. Понятие о трофической цепи Трофическая цепь это цепь последовательной передачи вещества и эквивалентной ему энергии от одних организмов до других. упорядоченный поток передачи энергии солнца от продуцентов к консументам различного порядка.
20201. Круговорот веществ в биосфере 106.5 KB
  Он заключается в следующем: горные породы подвергаются разрушению и выветриванию продукты разрушения сносятся потоками воды в Мировой океан. Круговорот воды Нам знакомы 3 состояния воды: твёрдое лёд жидкое собственно вода газообразное водяной пар. Главный источник поступления воды атмосферные осадки а главный источник расхода испарение. Продолжительность кругооборота: океан 3000 лет подземные воды 5000 лет полярные ледники 8500 лет озера 17 лет реки 10 дней вода в живых организмах несколько часов.
20202. Промышленная экология. Промышленное производство и его воздействие на окружающую среду 47.5 KB
  Протяжённость тропосферы 710 километров на полюсах и 1618 километров по экватору. Протяжённость стратосферы примерно 40 километров. До высоты 30 километров температура стратосферы примерно 50оС а затем начинает расти и на высоте 50 километров составляет 10оС. Это связано с наличием в стратосфере озонового слоя расположенного на высоте 2540 километров.
20203. Загрязнение гидросферы 87 KB
  Пресная вода составляет только 25 от всех запасов воды. Примерно 70 пресной воды содержится в ледниках. Ежегодно люди расходуют около 3000 км3 воды из них 150 км3 безвозвратно. Больше всего воды потребляет сельское хозяйство.