16888

ОПТИМИЗАЦИЯ ФОРМЫ КОРПУСНЫХ ДЕТАЛЕЙ МЕТАЛЛОРЕЖУЩИХ СТАНКОВ С ПОМОЩЬЮ ПРОГРАММЫ ANSYS

Научная статья

Информатика, кибернетика и программирование

ОПТИМИЗАЦИЯ ФОРМЫ КОРПУСНЫХ ДЕТАЛЕЙ МЕТАЛЛОРЕЖУЩИХ СТАНКОВ С ПОМОЩЬЮ ПРОГРАММЫ ANSYS Описана процедура оптимизации формы корпуса шпиндельной бабки токарного станка. Задача оптимизации заключалась в нахождении таких толщин стенок корпуса при которых он бы имел макси

Русский

2013-06-26

127 KB

9 чел.

ОПТИМИЗАЦИЯ ФОРМЫ КОРПУСНЫХ ДЕТАЛЕЙ МЕТАЛЛОРЕЖУЩИХ СТАНКОВ С ПОМОЩЬЮ ПРОГРАММЫ ANSYS

Описана процедура оптимизации формы корпуса шпиндельной бабки токарного станка. Задача оптимизации заключалась в нахождении таких толщин стенок корпуса, при которых он бы имел максимальную жесткость при сохранении своей исходной массы. В качестве характеристики жесткости корпуса использовались его смещения, приведенные к характерной точке (к зоне резания), смещения которой определяют эксплуатационные характеристики станка (точность обработки деталей). Результатом оптимизации явилось снижение смещений корпуса, приведенных к характерной точке, на 38%.

Описание конструкции шпиндельной бабки токарного станка 16К20

Шпиндельная бабка токарного станка 16К20 предназначена для базирования подшипников шпинделя, а также для передачи вращения от шкива ременной передачи на шпиндель. Внутри шпиндельной бабки находятся несколько валов с зубчатыми колесами, передающими вращение от шкива ременной передачи на шпиндель. Переключение зубчатых колес обеспечивает регулирование частоты вращения шпинделя.

Шпиндель имеет две опоры – переднюю и заднюю. Передняя опора воспринимает как радиальную, так и осевую нагрузку. Задняя опора выполнена плавающей, она воспринимает только радиальную нагрузку.

Корпус шпиндельной бабки имеет форму параллелепипеда. В нем расположены отверстия для опор шпинделя и промежуточных валов. Корпус крепится к станине болтами. Опорная поверхность корпуса состоит из 6 платиков.

При расчете используется упрощенная твердотельная модель корпуса (не учитываются отверстия под промежуточные валы, радиусы скруглений и т. п., см. рис. 1).

Расчет силовых смещений корпуса

Основной задачей проектирования несущей системы металлорежущего станка является обеспечение минимальных относительных смещений режущего инструмента и обрабатываемой детали по нормали к обрабатываемой поверхности, т. к. именно эти смещения определяют погрешность обработки деталей на станке.

Исходя из этого, жесткость корпуса шпиндельной бабки можно характеризовать смещениями поверхностей опор шпинделя (отверстий Ø150 и Ø130), приведенными к зоне резания (т. D, см. рис. 2).

При расчете использовалось допущение, что производится обработка типовой детали для данного станка (расстояние от конца шпинделя (т. C) до торца детали (т. D) LCD = 0,4 м). Также использовалось допущение, что выполняется характерный для данного станка технологический процесс (черновое точение, режимы резания: глубина, подача, скорость: t=3мм,  s=1мм/об, v=150м/мин, материал заготовки – сталь 45, материал резца – твердый сплав Т15К6).

Рассматривался только один вариант схемы нагружения корпуса шпиндельной бабки – соответствующий указанному выше технологическому процессу. Для получения более точных результатов необходимо рассмотреть несколько схем нагружения корпуса, соответствующих нескольким технологическим процессам.

Исходя из режимов резания, с помощью эмпирических формул рассчитаны составляющие силы резания:

Радиальная составляющая (направлена по оси X):

Fr = 1400 Н.

Тангенциальная составляющая (направлена по оси Y):

Ft = 1400 Н.

Осевая составляющая (направлена противоположно оси Z):

Fa = 4200 Н.

Затем, на основе составляющих силы резания, из уравнений статики были найдены реакции в опорах шпинделя, действующие со стороны шпинделя на корпус:

Составляющие реакции в передней опоре:

RAX = 2530 Н;

RAY = 7590 Н;

RAZ =-1400 Н.

Составляющие реакции в задней опоре:

RBX = 1130 Н;

RBY = 3390 Н;

RBZ =       0 Н.

При расчете напряженно-деформированного состояния реакции в опорах шпинделя полагались распределенными по поверхности опор шпинделя (отверстия Æ150 и Æ130). Осевая составляющая реакции распределялась равномерно по всей поверхности опоры. Радиальная составляющая распределялась по синусоидальному закону (см.

рис. 3). Корпус полагался  закрепленным       по всей своей опорной поверхности. Использовались механические характеристики, соответствующие материалу корпуса (серый чугун СЧ 15) – модуль Юнга E = 1*1011Па, коэффициент Пуассона m = 0,26.

После ввода приведенных выше исходных данных в ANSYS, был произведен расчет напряженно-деформированного состояния.

Затем были рассчитаны смещения опор шпинделя. Смещение опоры шпинделя определялось как среднее арифметическое смещений нескольких точек, равномерно распределенных по поверхности этой опоры. Т. к. в данной конструкции шпиндельной бабки задняя опора выполнена плавающей (нет фиксации в осевом направлении), то ее смещение по оси Z приравнивалось смещению по оси Z передней опоры.

Для передней опоры использовались точки A1,  A2, A3, A4, для задней - B1, B2, B3, B4 (см. рис. 4).

Получены следующие смещения опор шпинделя:

Смещения по осям X, Y, Z передней опоры:

DXA = 1,69*10-6м;

DYA = 2,31*10-6м;

DZA =-3,70*10-6м.

Смещения по осям X, Y, Z задней опоры:

DXB =-0,50*10-6м;

DYB =-0,63*10-6м;

DZB = DZA =-3,70*10-6м.

На основе смещений опор шпинделя рассчитаны смещения корпуса шпиндельной бабки, приведенные к зоне резания (к т. D). Расчет производился из геометрических соображений (см. рис. 5). Получены следующие значения смещений:

DXD = DXA+(DXA-DXB)*(LAD/LAB)=3,46*10-6м;

DYD = DYA+(DYA-DYB)*(LAD/LAB)= 4,67*10-6м;

DZD = DZA=-3,70*10-6м;

Оптимизация формы корпуса

Вклад, вносимый деформациями корпуса шпиндельной бабки в погрешность обработки детали, равен абсолютной величине составляющей по оси X деформаций корпуса, приведенных к т. D, т. е. |DXD|. Поэтому именно  величина |DXD| выбрана в качестве целевой функции при оптимизации.

Задача оптимизации была сформулирована, как нахождение такой формы корпуса шпиндельной бабки, которая бы обеспечивала минимальное значение |DXD| при сохранении массы корпуса m на уровне, не превышающем массу исходной конструкции m0 (см. рис. 1):

f = |DXD| → min;

m ≥ m0

Если говорить точнее, то при решении данной задачи в программе указывалось ограничение не на массу корпуса m, а на объем V, занимаемый материалом корпуса. Однако, эта задача эквивалентна приведенной выше, т. к. m и V прямо пропорциональны друг другу.

Варьируемыми параметрами при оптимизации являлись толщины стенок корпуса (см. рис. 6). Остальные размеры, показанные на рис. 1 оставались постоянными.

Таблица 1. Диапазоны изменения варьируемых  параметров при оптимизации

Параметр

Минимально допустимое значение, м

Максимально допустимое значение, м

THKLEFT

0,008

0,06

THKRIGH

0,008

0,06

THKBOTT

0,008

0,06

THKBACK

0,008

0,15

THKFRON

0,008

0,15

THKA

0,06

0,15

THKB

0,06

0,15

При оптимизации для каждого варьируемого параметра был установлен диапазон его изменения (см. табл. 1). Границы этих диапазонов установлены исходя из условий литейной технологии (рекомендуемая толщина стенки для деталей с габаритами данного корпуса – не менее 8 мм), а также исходя из необходимости наличия в корпусе достаточного пространства для размещения различных механизмов (валов, зубчатых передач и т. п.).

В программе ANSYS имеется два метода оптимизации: метод аппроксимации (метод нулевого порядка) и метод первого порядка. При решении данной задачи использовался метод аппроксимации, т. к. он обеспечил скорость сходимости приблизительно в 10 раз более быструю, чем метод первого порядка.

При использовании этого метода программа устанавливает соотношение между варьируемыми параметрами и целевой функцией в виде аппроксимирующей функции. Это осуществляется путем вычисления целевой функции для нескольких наборов значений варьируемых переменных (т. е. для нескольких вариантов конструкции) и ее аппроксимации методом наименьших квадратов. Получающаяся в результате функция называется аппроксимацией. Каждый цикл оптимизации создает новые наборы данных и аппроксимация обновляется. На каждом цикле оптимизации оптимизируется именно эта аппроксимация.

Всего с помощью метода аппроксимации было выполнено 120 итераций. После 60-й итерации оптимальные значения параметров перестали изменяться.

Изменения параметров в процессе оптимизации показано в табл. 2 и на рис. 7. По оси абсцисс графиков отложен номер набора параметров. Номер набора параметров связан np с количеством итераций ni соотношением:

np = ni + 1.

Первый набор параметров соответствует исходной конструкции (см. рис. 1).

Результатом оптимизации явилось уменьшение значения целевой функции f = |DXD| на 38%, т. е. абсолютная величина вклада, вносимого деформациями корпуса шпиндельной бабки в погрешность обработки детали, уменьшилась на 38%.

Таблица 2. Изменение параметров в ходе оптимизации

Параметр

Значение до оптимизации, м

Значение после оптимизации, м

THKLEFT

0,02

0,0081

THKRIGH

0,02

0,0081

THKBOTT

0,02

0,0081

THKBACK

0,02

0,0082

THKFRON

0,04

0,1190

THKA

0,06

0,0899

THKB

0,06

0,0607

VOLUME       (объем, занимаемый материалом)

0,02855 (м3)

0,02853 (м3)

UXDABS

(целевая функция)

3,46*10-6

(100%)

2,13*10-6

(62%)

В результате оптимизации материал корпуса оказался сосредоточенным в передней стенке, толщины остальных стенок оказались практически равными их минимально допустимым значениям. Небольшие отклонения, вероятно, обусловлены погрешностями метода оптимизации, возникающими из-за влияния штрафных функций, использования аппроксимаций и т. п.

Заключение

В настоящее время форма корпусных деталей определяется, как правило, на основе общих рекомендаций, разработанных для отдельных типов корпусных деталей, но не учитывающих условия работы конкретной детали и требования, предъявляемые к ней.

Программа ANSYS позволяет использовать процедуру оптимизации для корпусных деталей сколь угодно сложной формы. Это создает возможность применения нового подхода к конструированию корпусных деталей – подхода, при котором форма корпусной детали определяется исходя из обеспечения ее наилучших эксплуатационных характеристик.

Автор выражает признательность сотрудникам российского представительства фирмы CAD-FEM Gmbh, в особенности Алексею Сергеевичу Шадскому, за предоставленное программное обеспечение и техническую поддержку.


 

А также другие работы, которые могут Вас заинтересовать

43253. Расчет водяного насоса 922.5 KB
  Задачу решают подбором и перераспределением масс звеньев введением дополнительной маховой массы с постоянным моментом инерции в виде маховика. Расчет масс и моментов инерции звеньев.Располагая центры масс по серединам рычагов определим их массы и моменты инерции: вычисление масс момент инерции звена относительно центра масс момент инерции звена относительно оси вращения 2.Массы зубчатых колес и их моменты инерции определим по следующим формулам: масса iго колеса где =7800 кг м3 а d делительный диаметр колеса момент инерции iго...
43254. Разработка импульсного источника вторичного электропитания электронно-вычислительной аппаратуры 1014.5 KB
  Источники вторичного электропитания предназначены для получения заданной мощности в нагрузке при определённом заранее преобразования энергии. Требуемая мощность часто оказывается значительной, и поэтому повышение плотности упаковки электронных элементов не оказывает прямого и решающего влияния на миниатюризацию ИВЭП. Миниатюризация потребителей энергии не приводит к увеличению относительного объёма ИВЭП в системе, если их миниатюризация не осуществляется одновременно и с такой же эффективностью.
43255. Исследование методов сортировки с поиском минимума и деревом 211 KB
  Простейшая задача сортировки заключается в упорядочении элементов массива по возрастанию или убыванию. Другой задачей является упорядочение элементов массива в соответствии с некоторым критерием. Обычно в качестве такого критерия выступают значения определенной функции, аргументами которой выступают элементы массива. В работе приводится постановка задачи сортировки и поиска данных, описание алгоритмов, описание программы и правила ее использования, а также прилагается текст программы, решающей поставленную задачу.
43256. Расчет гидропривода 486 KB
  Под гидроприводом понимают совокупность устройств, предназначенных для приведения в движение механизмов и машин посредством рабочей жидкости под давлением. В качестве рабочей жидкости в станочных гидроприводах используется минеральное масло.
43257. Схема для живлення переговорного пристрою 624.5 KB
  Аналізуючи ці схеми, можна впевнитися, що дана схема є найбільш актуальною у розробці, порівняно з її аналогами, приведеними нижче. Схема, що розробляється, призначена для живлення, як потужної так і малопотужної апаратури, залежно від максимально допустимого рівня пульсації на вході. З точки зору схемотехнічного проектування виробу, дана схема є найбільш простою, так як має найменшу кількість елементів, та не має потужних елементів схеми, які присутні в двох аналогічних схемах.
43258. Разработка и расчет законченного электронного устройства 669 KB
  Датчиком температуры описываемого прибора служит кремниевый диод. При этом используется линейная зависимость паления напряжения на нем от температуры при фиксированном прямом токе смешения. Температурный коэффициент напряжения (ТКН) для кремниевых диодов практически постоянен в диапазоне -60...+ 100°С и составляет -2...-2,5 мВ/°С — в зависимости от типа диода и значения тока смешения. Как показали исследования, практически любой кремниевый диод или транзистор может быть использован как линейный температурный преобразователь в диапазоне от -55-С до+125°С.
43259. Разработка усилителя низкой частоты 5.43 MB
  Рассчитаем максимальное напряжение в нагрузке по формуле: В Определим максимальный ток протекающий через нагрузку: Рассчитаем требуемый коэффициент усиления усилителя по формуле: Определим ориентировочное количество каскадов предварительного усиления по следующей формуле: Полученное по формуле количество каскадов округляют до ближайшего целого нечетного числа так как схема с ОЭ дает сдвиг фаз 180 n = 3 Выходной каскад ставится на выходе усилителя и обеспечивает усиление мощности полезного сигнала в нагрузку.4...
43260. Проектирование усилительного устройства 205 KB
  Курсовая работа содержит 12 листов текста 2 чертежа 3 источника литературы Содержание Предварительный расчет Структурная схема усилителя Расчет элементов схемы Расчет усилителя мощности Описание схемы электрической принципиальной Выбор схемы блока питания Список используемой литературы Введение Основной задачей курсового проекта является разработка схемы электрической принципиальной усилительного устройства по заданным параметрам а так же освоение практических навыков в области проектирования для более...
43261. Проектирование усилительного устройства 224.5 KB
  Основной задачей курсового проекта является разработка схемы электрической принципиальной усилительного устройства по заданным параметрам, а так же освоение практических навыков в области проектирования, для более близкого знакомства со всеми этапами разработки электрической схемы