16888

ОПТИМИЗАЦИЯ ФОРМЫ КОРПУСНЫХ ДЕТАЛЕЙ МЕТАЛЛОРЕЖУЩИХ СТАНКОВ С ПОМОЩЬЮ ПРОГРАММЫ ANSYS

Научная статья

Информатика, кибернетика и программирование

ОПТИМИЗАЦИЯ ФОРМЫ КОРПУСНЫХ ДЕТАЛЕЙ МЕТАЛЛОРЕЖУЩИХ СТАНКОВ С ПОМОЩЬЮ ПРОГРАММЫ ANSYS Описана процедура оптимизации формы корпуса шпиндельной бабки токарного станка. Задача оптимизации заключалась в нахождении таких толщин стенок корпуса при которых он бы имел макси

Русский

2013-06-26

127 KB

7 чел.

ОПТИМИЗАЦИЯ ФОРМЫ КОРПУСНЫХ ДЕТАЛЕЙ МЕТАЛЛОРЕЖУЩИХ СТАНКОВ С ПОМОЩЬЮ ПРОГРАММЫ ANSYS

Описана процедура оптимизации формы корпуса шпиндельной бабки токарного станка. Задача оптимизации заключалась в нахождении таких толщин стенок корпуса, при которых он бы имел максимальную жесткость при сохранении своей исходной массы. В качестве характеристики жесткости корпуса использовались его смещения, приведенные к характерной точке (к зоне резания), смещения которой определяют эксплуатационные характеристики станка (точность обработки деталей). Результатом оптимизации явилось снижение смещений корпуса, приведенных к характерной точке, на 38%.

Описание конструкции шпиндельной бабки токарного станка 16К20

Шпиндельная бабка токарного станка 16К20 предназначена для базирования подшипников шпинделя, а также для передачи вращения от шкива ременной передачи на шпиндель. Внутри шпиндельной бабки находятся несколько валов с зубчатыми колесами, передающими вращение от шкива ременной передачи на шпиндель. Переключение зубчатых колес обеспечивает регулирование частоты вращения шпинделя.

Шпиндель имеет две опоры – переднюю и заднюю. Передняя опора воспринимает как радиальную, так и осевую нагрузку. Задняя опора выполнена плавающей, она воспринимает только радиальную нагрузку.

Корпус шпиндельной бабки имеет форму параллелепипеда. В нем расположены отверстия для опор шпинделя и промежуточных валов. Корпус крепится к станине болтами. Опорная поверхность корпуса состоит из 6 платиков.

При расчете используется упрощенная твердотельная модель корпуса (не учитываются отверстия под промежуточные валы, радиусы скруглений и т. п., см. рис. 1).

Расчет силовых смещений корпуса

Основной задачей проектирования несущей системы металлорежущего станка является обеспечение минимальных относительных смещений режущего инструмента и обрабатываемой детали по нормали к обрабатываемой поверхности, т. к. именно эти смещения определяют погрешность обработки деталей на станке.

Исходя из этого, жесткость корпуса шпиндельной бабки можно характеризовать смещениями поверхностей опор шпинделя (отверстий Ø150 и Ø130), приведенными к зоне резания (т. D, см. рис. 2).

При расчете использовалось допущение, что производится обработка типовой детали для данного станка (расстояние от конца шпинделя (т. C) до торца детали (т. D) LCD = 0,4 м). Также использовалось допущение, что выполняется характерный для данного станка технологический процесс (черновое точение, режимы резания: глубина, подача, скорость: t=3мм,  s=1мм/об, v=150м/мин, материал заготовки – сталь 45, материал резца – твердый сплав Т15К6).

Рассматривался только один вариант схемы нагружения корпуса шпиндельной бабки – соответствующий указанному выше технологическому процессу. Для получения более точных результатов необходимо рассмотреть несколько схем нагружения корпуса, соответствующих нескольким технологическим процессам.

Исходя из режимов резания, с помощью эмпирических формул рассчитаны составляющие силы резания:

Радиальная составляющая (направлена по оси X):

Fr = 1400 Н.

Тангенциальная составляющая (направлена по оси Y):

Ft = 1400 Н.

Осевая составляющая (направлена противоположно оси Z):

Fa = 4200 Н.

Затем, на основе составляющих силы резания, из уравнений статики были найдены реакции в опорах шпинделя, действующие со стороны шпинделя на корпус:

Составляющие реакции в передней опоре:

RAX = 2530 Н;

RAY = 7590 Н;

RAZ =-1400 Н.

Составляющие реакции в задней опоре:

RBX = 1130 Н;

RBY = 3390 Н;

RBZ =       0 Н.

При расчете напряженно-деформированного состояния реакции в опорах шпинделя полагались распределенными по поверхности опор шпинделя (отверстия Æ150 и Æ130). Осевая составляющая реакции распределялась равномерно по всей поверхности опоры. Радиальная составляющая распределялась по синусоидальному закону (см.

рис. 3). Корпус полагался  закрепленным       по всей своей опорной поверхности. Использовались механические характеристики, соответствующие материалу корпуса (серый чугун СЧ 15) – модуль Юнга E = 1*1011Па, коэффициент Пуассона m = 0,26.

После ввода приведенных выше исходных данных в ANSYS, был произведен расчет напряженно-деформированного состояния.

Затем были рассчитаны смещения опор шпинделя. Смещение опоры шпинделя определялось как среднее арифметическое смещений нескольких точек, равномерно распределенных по поверхности этой опоры. Т. к. в данной конструкции шпиндельной бабки задняя опора выполнена плавающей (нет фиксации в осевом направлении), то ее смещение по оси Z приравнивалось смещению по оси Z передней опоры.

Для передней опоры использовались точки A1,  A2, A3, A4, для задней - B1, B2, B3, B4 (см. рис. 4).

Получены следующие смещения опор шпинделя:

Смещения по осям X, Y, Z передней опоры:

DXA = 1,69*10-6м;

DYA = 2,31*10-6м;

DZA =-3,70*10-6м.

Смещения по осям X, Y, Z задней опоры:

DXB =-0,50*10-6м;

DYB =-0,63*10-6м;

DZB = DZA =-3,70*10-6м.

На основе смещений опор шпинделя рассчитаны смещения корпуса шпиндельной бабки, приведенные к зоне резания (к т. D). Расчет производился из геометрических соображений (см. рис. 5). Получены следующие значения смещений:

DXD = DXA+(DXA-DXB)*(LAD/LAB)=3,46*10-6м;

DYD = DYA+(DYA-DYB)*(LAD/LAB)= 4,67*10-6м;

DZD = DZA=-3,70*10-6м;

Оптимизация формы корпуса

Вклад, вносимый деформациями корпуса шпиндельной бабки в погрешность обработки детали, равен абсолютной величине составляющей по оси X деформаций корпуса, приведенных к т. D, т. е. |DXD|. Поэтому именно  величина |DXD| выбрана в качестве целевой функции при оптимизации.

Задача оптимизации была сформулирована, как нахождение такой формы корпуса шпиндельной бабки, которая бы обеспечивала минимальное значение |DXD| при сохранении массы корпуса m на уровне, не превышающем массу исходной конструкции m0 (см. рис. 1):

f = |DXD| → min;

m ≥ m0

Если говорить точнее, то при решении данной задачи в программе указывалось ограничение не на массу корпуса m, а на объем V, занимаемый материалом корпуса. Однако, эта задача эквивалентна приведенной выше, т. к. m и V прямо пропорциональны друг другу.

Варьируемыми параметрами при оптимизации являлись толщины стенок корпуса (см. рис. 6). Остальные размеры, показанные на рис. 1 оставались постоянными.

Таблица 1. Диапазоны изменения варьируемых  параметров при оптимизации

Параметр

Минимально допустимое значение, м

Максимально допустимое значение, м

THKLEFT

0,008

0,06

THKRIGH

0,008

0,06

THKBOTT

0,008

0,06

THKBACK

0,008

0,15

THKFRON

0,008

0,15

THKA

0,06

0,15

THKB

0,06

0,15

При оптимизации для каждого варьируемого параметра был установлен диапазон его изменения (см. табл. 1). Границы этих диапазонов установлены исходя из условий литейной технологии (рекомендуемая толщина стенки для деталей с габаритами данного корпуса – не менее 8 мм), а также исходя из необходимости наличия в корпусе достаточного пространства для размещения различных механизмов (валов, зубчатых передач и т. п.).

В программе ANSYS имеется два метода оптимизации: метод аппроксимации (метод нулевого порядка) и метод первого порядка. При решении данной задачи использовался метод аппроксимации, т. к. он обеспечил скорость сходимости приблизительно в 10 раз более быструю, чем метод первого порядка.

При использовании этого метода программа устанавливает соотношение между варьируемыми параметрами и целевой функцией в виде аппроксимирующей функции. Это осуществляется путем вычисления целевой функции для нескольких наборов значений варьируемых переменных (т. е. для нескольких вариантов конструкции) и ее аппроксимации методом наименьших квадратов. Получающаяся в результате функция называется аппроксимацией. Каждый цикл оптимизации создает новые наборы данных и аппроксимация обновляется. На каждом цикле оптимизации оптимизируется именно эта аппроксимация.

Всего с помощью метода аппроксимации было выполнено 120 итераций. После 60-й итерации оптимальные значения параметров перестали изменяться.

Изменения параметров в процессе оптимизации показано в табл. 2 и на рис. 7. По оси абсцисс графиков отложен номер набора параметров. Номер набора параметров связан np с количеством итераций ni соотношением:

np = ni + 1.

Первый набор параметров соответствует исходной конструкции (см. рис. 1).

Результатом оптимизации явилось уменьшение значения целевой функции f = |DXD| на 38%, т. е. абсолютная величина вклада, вносимого деформациями корпуса шпиндельной бабки в погрешность обработки детали, уменьшилась на 38%.

Таблица 2. Изменение параметров в ходе оптимизации

Параметр

Значение до оптимизации, м

Значение после оптимизации, м

THKLEFT

0,02

0,0081

THKRIGH

0,02

0,0081

THKBOTT

0,02

0,0081

THKBACK

0,02

0,0082

THKFRON

0,04

0,1190

THKA

0,06

0,0899

THKB

0,06

0,0607

VOLUME       (объем, занимаемый материалом)

0,02855 (м3)

0,02853 (м3)

UXDABS

(целевая функция)

3,46*10-6

(100%)

2,13*10-6

(62%)

В результате оптимизации материал корпуса оказался сосредоточенным в передней стенке, толщины остальных стенок оказались практически равными их минимально допустимым значениям. Небольшие отклонения, вероятно, обусловлены погрешностями метода оптимизации, возникающими из-за влияния штрафных функций, использования аппроксимаций и т. п.

Заключение

В настоящее время форма корпусных деталей определяется, как правило, на основе общих рекомендаций, разработанных для отдельных типов корпусных деталей, но не учитывающих условия работы конкретной детали и требования, предъявляемые к ней.

Программа ANSYS позволяет использовать процедуру оптимизации для корпусных деталей сколь угодно сложной формы. Это создает возможность применения нового подхода к конструированию корпусных деталей – подхода, при котором форма корпусной детали определяется исходя из обеспечения ее наилучших эксплуатационных характеристик.

Автор выражает признательность сотрудникам российского представительства фирмы CAD-FEM Gmbh, в особенности Алексею Сергеевичу Шадскому, за предоставленное программное обеспечение и техническую поддержку.


 

А также другие работы, которые могут Вас заинтересовать

34589. ОСНОВНЫЕ ФАКТОРЫ РОССИЙСКОГО ИСТОРИЧЕСКОГО ПРОЦЕССА 19.56 KB
  Самобытность России во многом определяется ее географическим положением между Европой и Азией – миром модернизации и миром традиционности. Этот фактор накладывает отпечаток на историческое развитие России. В самой России начиная с XVIII в. Главным среди природных факторов был континентальный характер расположения территории России.
34590. МЕСТО РОССИИ СРЕДИ МИРОВЫХ ЦИВИЛИЗАЦИЙ 24 KB
  МЕСТО РОССИИ СРЕДИ МИРОВЫХ ЦИВИЛИЗАЦИЙ Составитель: С. Соответственно и место России во всемирной истории определялось с точки зрения принадлежности ее к одной из общественноэкономических формаций.К какому же типу отнести Россию В какой мере самобытна цивилизация России Ответы на эти вопросы давались историками публицистами общественными деятелями с высоты своего времени с учетом всего предшествующего развития России а также в соответствии со своими идейнополитическими установками. Абсолютное большинство населения России исповедует...
34591. ВОСТОЧНЫЕ СЛАВЯНЕ В ДОФЕОДАЛЬНЫЙ ПЕРИОД 22.91 KB
  ВОСТОЧНЫЕ СЛАВЯНЕ В ДОФЕОДАЛЬНЫЙ ПЕРИОД Составитель: Л. Степанова Появление славян как самостоятельного этноса согласно археологическим материалам произошло еще в первое тысячелетие до н. славяне известны под именем антов и венедов. в источниках появляется имя славяне.
34592. ДРЕВНЕРУССКОЕ ГОСУДАРСТВО: ЗАКОНОМЕРНОСТИ И ОСОБЕННОСТИ ОБРАЗОВАНИЯ, СОЦИАЛЬНЫЙ И ПОЛИТИЧЕСКИЙ СТРОЙ (IX – начало XII вв.) 21.55 KB
  Но произошло это объединение в результате похода князя Олега датируемого летописью 882 годом при активном участии его Руси – варяжской дружины вместе с другими племенами Поильменья. Рассматривая особенности политического устройства Киевской Руси следует выделить такой родоплеменной пережиток как наследование великого княжения по старшинству. Это заставляло всю многочисленную родню Рюриковичей время от времени менять свое пребывание в одном из княжеств и перебираться в другое что не способствовало ни укреплению центральной власти в Киеве...
34593. США во Второй мировой войне 14.25 KB
  Когда УВП не удалось взять под свой контроль добычу и поставки сырья Рузвельт создал сначала управление экономической стабилизации а затем управление военной мобилизации наделенное чуть ли не диктаторскими полномочиями. Комиссия по справедливому найму которую Рузвельт был вынужден создать под угрозой негритянского марша на Вашингтон во главе с Филипом Рэндолфом председателем профсоюза железнодорожных проводников помогла афроамериканцам бороться с дискриминацией в военной промышленности особенно после того как в 1943 Рузвельт наделил...
34594. США в конце XX – начале XXI вв 15.84 KB
  Укрепление политического экономического военного лидерства в мире стало ведущей идеей политики США во второй половине XX начале XXI в. Этому способствовало с одной стороны ключевое положение США в ООН в составе 5 государств членов Совета Безопасности а с другой активное участие в создании НАТО сети других военнополитических блоков. Была развернута сеть военных баз и объектов США в Европе в государствах участниках НАТО на Дальнем Востоке и в бассейне Тихого океана в Латинской Америке и зоне Карибского бассейна на Ближнем...
34595. Соединенное Королевство: географическое положение, рельеф, природные условия, флора и фауна. Символы 40.5 KB
  Официально же она именуется Соединенное Королевство Великобритании и Северной Ирландии. В целом на их долю приходится приблизительно 1 3 площади Великобритании и бoльшая часть Северной Ирландии. В Северной Ирландии змей нет. Символы: Флаг Соединенного Королевства Великобритании и Северной Ирландии или как его принято называть Юнион Джек Union Jck является сочетанием трех крестов святых покровителей Англии прямой красный крест на белом поле крест Св.
34596. Столетняя война 17.15 KB
  Столетняя война наименование длительного военного конфликта между Англией и Францией 13371453 вызванного стремлением Англии вернуть принадлежавшие ей на континенте Нормандию Мен Анжу и др. а также династическими притязаниями английских королей на французский престол. война между Англией и Францией. причины войны: стремление Франции вытеснить Англию с югозапада страны провинция Гиень и ликвидировать этот последний оплот английской власти на франц.
34597. Династия Тюдоров. Генрих VII 19.17 KB
  Генрих VII Генрих VII Тюдор 28 января 1457 – 21 апреля 1509 – король Англии и государь Ирландии 1485 – 1509. Родители: Эдмунд Тюдор 1й граф Ричмонд; единоутробный брак короля Генриха VI Маргарита Бофорт. 1471 – гибель Генриха VI и принца Уэльского Генрих – почти единственный родственник Ланкастеров. Генрих поклялся в Ренне в случае захвата власти жениться на дочери Эдуарда IV Елизавете Йоркской.