16944

Биотест веществ ауксиновой природы

Лекция

Биология и генетика

Биотест веществ ауксиновой природы. Объект: Капуста краснокочанная Brassica okvacea сорт Мехневская. Цель: Сравнить физиологическое действие искусственных аналогов ауксина 24D и aНУК и естественного ауксина ИУК на прорастающие семена капусты. Выполнение работы. Рабо

Русский

2013-06-28

89 KB

8 чел.

Биотест веществ ауксиновой природы.

Объект: Капуста краснокочанная (Brassica okvacea) сорт Мехневская.

Цель: Сравнить физиологическое действие искусственных аналогов ауксина (2,4-D и a-НУК) и естественного ауксина (ИУК) на прорастающие семена капусты.

 Выполнение работы.

Работу выполняем, разбившись на три группы. Каждая группа исследует влияние только одного вещества на прорастающие семена, результаты затем объединяются. Проростки выращиваем из семян на среде MS. Влияние веществ исследуем в следующих концентрациях в среде: 0,002 мг/л, 0,02 мг/л, 0,2 мг/л и 2 мг/л против контроля, не содержащего этого вещества. Все вещества ауксиновой в природы вносим в среду для выращивания проростков в виде растворов в ДМСО, поэтому необходимо сделать так, чтобы во всех пробах (включая контроль) концентрация ДМСО была одинаковой. Во избежание инфицирования среды для выращивания проростков все работы проводим в ламинар-боксе, используя стерильную посуду и инструменты.

Наша группа работала с ИУК.

Ход работы.

  1.  Готовим раствор ИУК в ДМСО с концентрацией 20 мкг/мл в количестве 1мл. Для этого при помощи микропипеткой в эппендорф наливаем 995 мкл ДМСО и 5 мкл раствора ИУК концентрацией 4 мг/мл.
  2.  Плавим среду MS на водяной бане.
  3.  Отмеряем с помощью мерного цилиндра 50 мл среды MS, переливаем в стакан.
  4.  Микропипеткой в стакан вносим один из растворов ИУК (4 мг/мл или 20 мкг/мл) и если необходимо ДМСО в соответствии с таблицей 1. В случае контроля – только ДМСО.
  5.  Содержимое стакана переливаем в чашку Петри, закрываем, ставим застывать в течение 15 минут. Чашку Петри маркируем – указываем концентрацию ИУК в среде.

Пункты 3 – 5 повторяем для каждой концентрации ИУК в среде, т.е. 5 раз. Таким образом, у нас получается по одной чашке Петри – каждая со своим содержанием ИУК, плюс одна контрольная.

  1.  Проводим поверхностную стерилизацию семян. Для этого на дно чашки Петри кладем два слоя фильтровальной бумаги, сверху насыпаем семена. Обрабатываем стерилизующим раствором (5% раствор H2O2 в 96% этаноле), при этом следим, чтобы все семена оказались смоченными, но не «плавали».
  2.  Ждем, пока поверхность семян не станет сухой (примерно 3 минуты).
  3.  Переносим семена в чашки Петри с застывшей средой MS, приготовленной в пунктах 3 – 5. В каждую чашку помещаем по 30 семян. Следим, чтобы семена прилипли к среде.
  4.  Проводим герметизацию чашек Петри и окончательную маркировку, включающую дату постановки эксперимента и указание внесенного вещества ауксиновой прроды.
  5.  Ставим на инкубацию на 14 дней. Условия инкубации t = 20ºC , 7000 люкс люминесцентные белые ламппы, 16 часов день, 8 часов ночь.
  6.  По окончании инкубации проводим измерение длины корня и длины гипокотиля проростков. Результаты заносим в таблицу 2.

Таблица 1. Приготовление среды для постановки эксперимента.

Концентрация ИУК в среде, мг/л

0

0,002

0,02

0,2

2

Объем среды MS, мл

50

50

50

50

50

Содержание ИУК в чашке, мг

0

10- 4

10- 3

10- 2

10- 1

Объем р-ра ИУК (4 мг/мл), мкл

0

0

0

0

25

Объем р-ра ИУК (20  мкг/мл), мкл

0

5

50

500

0

Объем ДМСО, мкл

500

495

450

0

475

Таблица 2.1. Экспериментальные данные по длине корня.

Таблица 2.2. Экспериментальные данные по длине гипокотиля.

Данные, полученные тремя группами по всем веществам (ИУК, 2,4-D и a-НУК), объединяем и заносим в таблицы 3 и 4. По этим данным строим графики зависимости относительной длины корня и гипокотиля (разности между матожиданием длины, полученной в эксперименте при данной концентрации ауксиноподобного вещества, и матожиданием в контроле) от десятичного логарифма концентрации ауксиноподобного вещества.

Таблица 3. Объединенные данные по влиянию веществ ауксиновой природы на длину корня 14-тидневного проростка капусты.

Таблица 4. Объединенные данные по влиянию веществ ауксиновой природы на длину гипокотиля 14-тидневного проростка капусты.

Кроме того, у растений, выращенных на среде, содержащей от 0,02 мг/л и более, наблюдаем нарушение геотропизма: в случае 0,02 мг/л и 0,2 мг/л – слабое, в случае 2 мг/л – сильное.

Обсуждение результатов.

Первое, что бросается в глаза, это наличие оптимума концентрации ауксиноподобных веществ, при котором длина корня и гипокотиля равна или больше таковой контрольных растений. При других концентрациях наблюдается подавление роста этих органов. Для корня этот оптимум лежит в районе 0,02 мг/л, для гипокотиля – в районе 0,02 – 0,2 мг/л. Исключение составляет 2,4-D, который действует угнетающе на рост корня во всех исследованных в данной работе концентрациях. Между тем, известно, что ауксины являются стимуляторами роста растений путем растяжения клеток. Ингибирующий эффект у ауксинов тоже есть, но он заключается не в подавлении роста, а подавлении дифференцировки, как, например, в случае апикального доминирования.Тем не менее, мы наблюдаем подавление роста особенно  при высоких концентрациях веществ ауксиновой природы. Это можно объяснить тем, что высокие концентрации ауксинов запускают синтез гормона-антагониста этилена. Последний угнетает рост побегов в длину и ингибирует рост главного корня. Именно эти эффекты мы и наблюдаем в опыте.

Ингибирующий эффект при высокой концентрации веществ ауксиновой природы (2 мг/л) наиболее сильно проявляется у искусственных аналогов ауксина: сильнее всего в случае 2,4-D, затем идет a-НУК, и еще слабее у ИУК – естественного ауксина. Объяснить это следует так. Естественные ауксины могут переводиться в физиологически неактивное состояние за счет обратимого гликозилирования и необратимого окисления. Синтетические аналоги ауксина (2,4-D, a-НУК) хорошо связываются с ауксиновыми рецепторами, но практически не подвергаются деградации и гликозилированию. Поэтому эти вещества в высокой концентрации вызывают более интенсивный синтез этилена, чем естественные ауксины в той же концентрации, что и обуславливает их ингибирующий эффект. Более сильное действие 2,4-D по сравнению с a-НУК можно связать с тем, что 2,4-D,вероятно, более эффективно взаимодействует с системой ауксинзависимого синтеза этилена, а так же, возможно, с тем, что a-НУК несколько легче подвергается дезактивации в растительных тканях.

Мы видим, что действие экзогенных ауксинов на корень сильнее, чем на гипокотиль. Это, по всей видимости, связано с тем, что гипокотиль покрыт кутикулой, а корень – нет. Кутикула затрудняет проникновение ауксинов извне, поэтому в тканях гипокотиля концентрация ауксинов возрастает в меньшей степени, чем в тканях корня.

При высоких концентрациях веществ ауксиновой природы наблюдается нарушение положительного геотропизма корня. Известно, что за геотропизм корня отвечает ауксин. При отклонении корня от вертикального положения потоки ауксинов перераспределяются таким образом, чтобы концентрация этих гормонов была больше в верхней части корня, что ведет к усиленному растяжению клеток в этой области и загибанию корня вниз. Экзогенные ауксины при высоких концентрациях распределяются по корню равномерно. На этом фоне, вероятно, естественные градиенты этих гормонов незначительны, и все области корня растут одинаково независимо от их пространственного расположения, что, по-видимому, и объясняет нарушение геотропизма.


 

А также другие работы, которые могут Вас заинтересовать

83638. Метод кусочно-линейной аппроксимации 134 KB
  Для каждого участка ломаной определяются эквивалентные линейные параметры нелинейного элемента и рисуются соответствующие линейные схемы замещения исходной цепи. Расчет каждой из полученных линейных схем замещения при наличии в цепи одного нелинейного элемента и произвольного числа линейных не представляет труда. При наличии в цепи переменного источника энергии рабочая изображающая точка будет постоянно скользить по аппроксимирующей характеристике переходя через точки излома.
83639. Метод эквивалентных синусоид (метод расчета по действующим значениям) 181 KB
  Катушка с ферромагнитным сердечником Нелинейная катушка индуктивности изображена на рис. Различают параллельную и последовательную схемы замещения катушки с ферромагнитным сердечником. Схемы замещения уравнения и векторные диаграммы для катушки c ферромагнитным сердечником Схема замещения Уравнения и соотношения для параметров Векторная диаграмма Параллельная Последовательная где где Примечание. Трансформатор с ферромагнитным сердечником Трансформатор с ферромагнитным сердечником изображен на рис.
83640. Переходные процессы в нелинейных цепях 165 KB
  На нелинейные цепи не распространяется принцип суперпозиции поэтому основанные на нем методы в частности классический или с использованием интеграла Дюамеля для расчета данных цепей не применимы. Отсутствие общности подхода к интегрированию нелинейных дифференциальных уравнений обусловило наличие в математике большого числа разнообразных методов их решения нацеленных на различные типы уравнений. Применительно к задачам электротехники все методы расчета по своей сущности могут быть разделены на три группы: аналитические методы...
83641. Графические методы анализа переходных процессов в нелинейных цепях 196.5 KB
  По сравнению с рассмотренными выше аналитическими методами они обладают следующими основными преимуществами: отсутствием принципиальной необходимости в аналитическом выражении характеристики нелинейного элемента что устраняет погрешность связанную с ее аппроксимацией; возможностью проведения расчетов при достаточно сложных формах кривых нелинейных характеристик. Метод фазовой плоскости Метод позволяет осуществлять качественное исследование динамических процессов в нелинейных цепях описываемых дифференциальными уравнениями первого и...
83642. Цепи с распределенными параметрами 159.5 KB
  Однако на практике часто приходится иметь дело с цепями линии электропередачи передачи информации обмотки электрических машин и аппаратов и т. уже при к линии следует подходить как к цепи с распределенными параметрами. Для исследования процессов в цепи с распределенными параметрами другое название длинная линия введем дополнительное условие о равномерности распределения вдоль линии ее параметров: индуктивности сопротивления емкости и проводимости. Уравнения однородной линии в стационарном режиме Под первичными параметрами линии...
83643. Линия без искажений 208 KB
  Таким образом для отсутствия искажений что очень важно например в линиях передачи информации необходимо чтобы все гармоники распространялись с одинаковой скоростью и одинаковым затуханием поскольку только в этом случае сложившись они образуют в конце линии сигнал подобный входному. Однако искажения могут отсутствовать и в линии с потерями. Фазовая скорость для такой линии и затухание .
83644. Входное сопротивление длинной линии 156 KB
  В общем случае для линии с произвольной нагрузкой для входного сопротивления можно записать. Полученное выражение показывает что входное сопротивление является функцией параметров линии и ее длины и нагрузки. При этом зависимость входного сопротивления от длины линии т.
83645. Сведение расчета переходных процессов в цепях с распределенными параметрами к нулевым начальным условиям 149 KB
  Таким образом если к линии в общем случае заряженной подключается некоторый в общем случае активный двухполюсник то для нахождения возникающих волн необходимо определить напряжение на разомкнутых контактах ключа рубильника после чего рассчитать токи и напряжения в схеме с сосредоточенными параметрами включаемой на это напряжение при нулевых начальных условиях. Полученные напряжения и токи накладываются на соответствующие величины предыдущего режима. При отключении нагрузки или участков линии для расчета возникающих волн напряжения и...
83646. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА 122.5 KB
  Эрстедом влияния электрического тока на магнитную стрелку. Омом было найдено соотношение между силой тока электродвижущей силой источника энергии и сопротивлением проводника по которому проходит ток т. Создателем техники трехфазного тока является русский ученый М. Им создан первый асинхронный двигатель с ротором типа беличье колесо 1889 первый трехфазный генератор переменного тока 1888.