17160

Лінійні динамічні системи. Диференційне рівняння системи. Передатна функція. Її властивості

Лекция

Информатика, кибернетика и программирование

Лекція 2.Тема. Лінійні динамічні системи. Диференційне рівняння системи. Передатна функція. Її властивості. План 1. Лінійні динамічні системи. 2.Диференційне рівняння системи. 3.Передатна функція. Її властивості. Лінійні динамічні системи. Динамічн...

Украинкский

2013-06-29

70 KB

15 чел.

Лекція 2.Тема. Лінійні динамічні системи. Диференційне рівняння системи. Передатна   функція. Її властивості.

План

1. Лінійні динамічні системи.

2.Диференційне рівняння системи.

3.Передатна функція. Її властивості.

  1.  Лінійні динамічні системи.

Динамічна система - система, що описується лінійними й нелінійними диференціальними рівняннями високого  порядку.

У самому загальному виді зв'язок між входом і виходом динамічної системи можна представити у вигляді:

х(t) – вихідна векторна величина, y(t) – вхідна векторна величина (функція часу), А – оператор системи, встановлюючий відповідності (однозначні) між входом y(t) й виходом x(t) і трактуемый у самому широкому змісті, тобто буквою А позначається вся сукупність математичних дій, які потрібно зробити, щоб по даній вхідній функції y(t) знайти результат – вихідну функцію x(t).

Оператор системи є повною, вичерпною характеристикою. При цьому поняттям оператора поєднуються будь-які математичні дії: всі алгебраїчні дії, диференціювання, інтегрування, зрушення в часі, рішення диференціальних, інтегральних алгебраїчних і будь-яких інших функціональних рівнянь, а також будь-які логічні дії (тобто виконувати досить складні алгоритми).

Задати оператор системи - це означає задати сукупність (програму) дій, які треба здійснити над вхідною функцією, щоб одержати вихідну функцію. Оператор А називається лінійним, якщо при будь-яких n, с1, …, сn і при будь-яких функціях y1(t), …, yn(t) справедливо:

Динамічна система називається лінійної, якщо її оператор лінійний.

Властивість лінійних систем, виражена співвідношенням (*) називається принципом суперпозиції. Для того, щоб система була, таким чином, лінійної необхідно й досить:

1.Сумі будь-яких двох вхідних збурювань відповідає сума двох вихідних змінних:

2.При будь-якім посиленні вхідного збурювання без зміни його форми (масштабне по осі ординат зміна) вихідна змінна перетерплює точно таке ж посилення, також не змінюючись за формою:

Підкреслимо, що для лінійності системи необхідно, щоб принцип суперпозиції дотримувався при будь-якім числі доданків, при будь-якому виборі величини з? і функцій y?(t). Прикладами лінійних операторів є

,

інтегральний оператор

більше загальний интегро-дифференциальный оператор

До лінійному інтегральному або интегро-дифференциальному оператора приводиться оператор рішення довільного звичайного диференціального рівняння:

Зі справедливості принципу суперпозиції для лінійних систем при будь-якім числі доданків і будь-якому виборі функцій y?(t) і чисел з? треба, що він застосовний не тільки до сум, але й до інтегралів, тобто

де індекс t в оператора А показує, що цей оператор діє над функцією аргументу t, а розглядається як фіксований параметр.

Співвідношення (**) позначає принцип суперпозиції в інтегральній формі.

Принцип суперпозиції дає можливість виразити реакцію лінійної системи на будь-яке збурювання через її реакцію на певний вид елементарних збурювань. Для цього досить розкласти довільне збурювання y(t) на елементарні збурювання обраного типу. Тоді, знаючи реакцію лінійної системи на елементарне збурювання, можна за допомогою принципу суперпозиції визначити її реакцію на довільне збурювання.

2.Диференційне рівняння системи.

Опис лінійних систем здійснюється у формі диференціального рівняння:

y(t) – вхід (іноді пишуть  f(t));

x(t) – вихід динамічної системи.

Розглянемо рівняння динамічної системи у вигляді:

(1)

Застосуємо до правої й лівої частин перетворення Лапласа:

…………………………………………………………………………

Підсумовуючи,одержимо:

,

Де - цілком залежить від початкових умов і при нульових початкових умовах звертається в нуль.

Аналогічно можна одержати для правої частини:

.

Уводячи нові позначення, одержимо, що:

;

,

де перший доданок визначає ефект впливу й не залежить від початкових умов, а другий доданок, навпаки, залежить від початкових умов і не залежить від впливу.

3.Передатна функція. Її властивості.

Особливе положення займає відношення

що, являється відношенням перетворення виходу до входу при нульових початкових умовах:

- передатна функція лінійної динамічної системи із зосередженими параметрами (стаціонарна).

Якщо рішення отримане в операторной формі у вигляді (34), то застосовуючи зворотне перетворення Лапласа до   одержимо рішення рівняння в області речовинної змінної, тобто.

.

Властивості передатної функції динамічної системи

Ці властивості справедливі для систем стійких із зосередженими параметрами.

1.Передатна функція  або являють собою дрібно-раціональну функцію, причому порядок m чисельника не перевищує порядок n знаменника.

2.Всі коефіцієнти  речовинні.

3.Нематеріальні нулі й полюси передатної функції можуть бути лише комплексно-спряженні.

4.Всі полюсы передатної функції розташовані в лівій напівплощині комплексного змінного (умова стійкості).

Контрольні питання

1. Лінійні динамічні системи.

2.Диференційне рівняння системи.

3.Передатна функція. Її властивості.

Список літератури.

1. Іванов А.А. Теория автоматического управления и регулирования. М.: издательство «Недра», 1970, с. 252.

2. Я.З. Цыпкин «Основы теории автоматических систем». М.: «Наука», 1977, с. 560.

3. Фельдбаум А.А., Теоретические основы связи и управления. М.: «Наука», 1963, с. 240.

4. Понтрягин А.С., Математическая теория оптимальных процессов. М.: «Наука», 1961, с. 320.

5. Зубов В.И. Лекции по теории управления. М.: «Наука», 1975, с. 345.

6. Перегудовидр Ф.И. Информационные системы для руководителей. М.: Финансы и статистика, 1992, с. 168.


Система

(t)

y(t)

f(t)


 

А также другие работы, которые могут Вас заинтересовать

23371. Создание мультимедийных приложений 115 KB
  В настоящей лабораторной работе будет показано как создать простейшие приложения для прослушивания звуковых файлов и просмотра анимации с помощью компонента MediaPlayer. Компонент MediaPlayer Компонент MediaPlayer расположен на странице System Палитры Компонентов. Общий вид компонента MediaPlayer представлен на рис. Вид MediaPlayer на форме Ниже в таблице 16.
23372. Использование компонента Timer. Организация простейшей мультипликации 68.5 KB
  В данной работе приводятся примеры работы компонента Timer обеспечивающего доступ к системному таймеру компьютера и его использование совместно с компонентом Image для создания простейшей мультипликации. Компонент Timer. Прием сообщений от таймера компьютера в приложении Delphi обеспечивает специальный компонент Timer со страницы System Палитры Компонентов.
23373. Конструирование меню и работа со стандартными окнами диалога Windows 322.4 KB
  Контекстное меню Рабочая область редактора Панель инструментов Меню Рис. Создание главного меню приложения Для создания главного меню приложения необходимо: поместить на форму компонент MainMenu Главное меню со станицы Standard Палиры Компонентов. Двойным щелчком по данному невизуальному компоненту вызвать редактор меню: Перемещаясь по обозначенным пунктам меню задаем в свойстве Caption каждого пункта.
23374. Отображение графической информации в Delphi 112.5 KB
  Объект Canvas Delphi имеет в своём распоряжении специальный объект который оформлен в виде свойства Canvas. Слово Canvas можно перевести на русский язык как холст для рисования или канва. Если у объекта есть свойство Canvas на его поверхности можно рисовать. Кроме компонентов перечисленных выше свойством Canvas обладают также: Image SpLitter ControlBox а так же объект TPrinter который благодаря этому свойству позволяет распечатывать графические изображения на принтере.
23375. Определение момента инерции с помощью маятника Обербека 349 KB
  Китаева Определение момента инерции с помощью маятника Обербека Методические указания к выполнению лабораторной работы № 6 по курсу механики молекулярной физики и термодинамики. Маятник Обербека предназначен для изучения прямолинейного равнопеременного и вращательного движения в частности для определения ускорения момента инерции тел. Векторное уравнение 1 эквивалентно трём скалярным уравнения 2 каждое из которых из которых представляет собой основное уравнение динамики вращательного движения относительно неподвижной оси или :...
23376. Определение отношения молярных теплоёмкостей газа при постоянном давлении и объёме по методу Клемана и Дезорма 687.5 KB
  Целью настоящей работы является определение отношения молярных теплоёмкостей воздуха при постоянном давлении и объёме по методу Клемана и Дезорма. Тогда 5 Так для воздуха имеем: . Первая 1 широкая для лучшего адиабатического расширения воздуха находящегося в сосуде соединена с сосудом и запирается краном ; вторая 2 соединена с насосом и снабжена краном ; третья 3 соединена с Uобразным жидкостным водяным манометром 4....
23377. Определение момента инерции методом крутильных колебаний 633.5 KB
  Орлова Определение момента инерции методом крутильных колебаний Методические указания к выполнению лабораторной работы № 8 по курсу механики молекулярной физики и термодинамики. Это уравнение математически тождественно дифференциальному уравнению свободных незатухающих колебаний: 2 где смещение колеблющегося тела относительно положения равновесия; циклическая частота колебаний причём ...
23378. Определение скорости звука в воздухе 333 KB
  При распространении волны частицы среды колеблются около своих положений равновесия. Упругие волны бывают продольными и поперечными. В продольных волнах частицы среды колеблются в направлении распространения волны. В поперечных волнах частицы среды колеблются в направлениях перпендикулярных направлению распространения волны.
23379. Определение скорости полёта пули с помощью баллистического крутильного маятника 1.24 MB
  Мясников Определение скорости полёта пули с помощью баллистического крутильного маятника Методические указания к выполнению лабораторной работы № 10 по курсу механики молекулярной физики и термодинамики. Цель работы: ознакомиться с принципом действия баллистического крутильного маятника и с его помощью определить скорость полета пули. При определении скорости полета пули в данной работе используется закон сохранения момента импульса : если момент внешних сил относительно оси вращения равен нулю то где момент инерции системы маятник...