172

Решение дифференциальных уравнений численными методами в пакете MathCad

Реферат

Информатика, кибернетика и программирование

решение дифференциального уравнения вручную, операторным методом, приближенное решение с помощью рядов. Расчет погрешностей приближенных методов по сравнению с точным. Численное решение ДУ методом Рунге-Кутта.

Русский

2012-11-14

356 KB

106 чел.

Уральский Государственный Университет Путей Сообщения

                                                       Кафедра «Высшая математика»

                                                       Дисциплина «Вычислительная математика»

Курсовая работа

на тему:

«Решение дифференциальных уравнений численными методами в пакете MathCad»

                                                                      Выполнил: студент группы М-218

                                                                      Выборский М.А.

                                                                     

                                                                      Проверил: преподаватель

                                 Казанцева Н.В.

Екатеринбург

2009


Задача №1. Получить: точное решение дифференциального уравнения вручную, операторным методом, приближенное решение с помощью рядов (до 5 элемента ряда) на интервале [0,1], численное решение методами Эйлера и Рунге-Кутта, представить совместное графическое решение ДУ всеми способами, рассчитать относительную и абсолютную погрешность всех методов.

x"-x=cos3*t

x(0)=1    x'(0)=1

Дано:

1.Точное решение ДУ операционным методом

 

  Пусть Y(s) изображение функции х(t). Найдем вид операторного уравнения. Запишем выражение для второй  пройзводной (1) и для правой части (2) использованием оператора laplase

(1)

                                      (2)

Перепишем исходное уравнение через полученные изображения, подставив значения х(0) и х'(0) в исходное выражение


             Точное решение ДУ

2. Приближенное решение с помощью рядов

     Найдем функцию х в следующем виде:

 Найдем вторую производную исходного выражения:

                                                            Подставим значения второй производной и правой части в исходное    уравнение:

С помощью функции Find найдем значения неизвестных коэффициентов


            Получим решение уравнения:

      

      Фазовый портрет решения

3. Численное решение ДУ методом Рунге-Кутта

Производная х'

Производная х''

                 Графики решения

Фазовый портрет решения


4. Численное решение ДУ методом Эйлера

      Графики решения                                                      Фазовый портрет решения

        

                   

                                     Совместные решения

5. Расчет погрешностей приближенных методов по сравнению с точным

 

Заданный интевал t

Точное решение ДУ

1, Приближенное решение с помощью рядов

Абсолютная погрешность, D

Относительная погрешность, d - %

0

1,000

1

0,000

0,00%

0,1

1,110

1,110

0,000

0,00%

0,2

1,241

1,241

0,000

0,00%

0,3

1,392

1,392

0,000

0,00%

0,4

1,564

1,563

0,001

0,06%

0,5

1,754

1,753

0,001

0,06%

0,6

1,963

1,959

0,004

0,20%

0,7

2,190

2,179

0,011

0,50%

0,8

2,433

2,409

0,024

0,99%

0,9

2,693

2,645

0,048

1,78%

1

2,972

2,883

0,089

2,99%

Заданный интевал t

Точное решение ДУ

2, Численное решение ДУ методом Рунге-Кутта

Абсолютная погрешность, D

Относительная погрешность, d - %

0

1,000

1,000

0,000

0,00%

0,1

1,110

1,110

0,000

0,00%

0,2

1,241

1,241

0,000

0,00%

0,3

1,392

1,392

0,000

0,00%

0,4

1,564

1,564

0,000

0,00%

0,5

1,754

1,754

0,000

0,00%

0,6

1,963

1,963

0,000

0,00%

0,7

2,190

2,190

0,000

0,00%

0,8

2,433

2,433

0,000

0,00%

0,9

2,693

2,693

0,000

0,00%

1

2,972

2,972

0,000

0,00%

Заданный интевал t

Точное решение ДУ

2, Численное решение ДУ методом Эйлера

Абсолютная погрешность, D

Относительная погрешность, d - %

0

1,000

1,000

0,000

0,00%

0,1

1,110

1,1

0,010

0,90%

0,2

1,241

1,22

0,021

1,69%

0,3

1,392

1,361

0,031

2,23%

0,4

1,564

1,522

0,042

2,69%

0,5

1,754

1,702

0,052

2,96%

0,6

1,963

1,902

0,061

3,11%

0,7

2,190

2,119

0,071

3,24%

0,8

2,433

2,354

0,079

3,25%

0,9

2,693

2,604

0,089

3,30%

1

2,972

2,87

0,102

3,43%

  Вывод: численное решение ДУ методом Рунге-Кутта не дало погрешности, а графики приближенного решения с помощью рядов и численного решения методом Эйлера по мере возрастания на заданном интервале [0,1] дают небольшие отклонения, первый, начиная с точки t=0.6 (δ=0.20%) отклоняется вверх и при t=1 дает погрешность уже δ =2.99%. Решение методом Эйлера дает в сумме большую погрешность, так как уже начиная с точки t=0,2 отклонение от точного графика происходит более, чем на 1% и лежит ниже точного графика.


Задача №2.

Решить систему диф.уравнений, получить точное решение вручную, операторным методом, приближенное решение с помощью рядов(до 5 элемента), численное решение методом Эйлера,  Рунге-Кутта.  Представить графическое совместное решение, рассчитать относительную и абсолютную погрешность.

1. Решение системы ДУ операторным методом

1.1 Пусть Y(s) изображение функции y(t).Найдем вид операторного уравнения. Запишем выражение для производной х (1), для производной у (2) и для правой части  (3) использованием оператора laplase

  (1)

 (2)

    (3)

Перепишем исходное уравнение через полученные изображения, подставив значения х(0) и  y(0) в исходное выражение


Получим решение системы:


2. Приближенное решение системы ДУ с помощью рядов

   Выразим из первого уравнения системы у через х. Продифференцируем это выражение. Найденные значения у и его производной подставим во второе уравнение системы. Получим диф.уравнение второй степени, зависящее только от х.

y=x'/4-x/4                                     

y'=x''/4-x'/4                                         

x''/4-x'/4-2x+x'/4-x/4-9=0                                   

        x''/4-9/4x-9=0    (1)

 

 

Решим его с помощью рядов. Будем искать функцию х в следующем виде:

Найдем вторую производную этого выражения:

Подставим эти выражения в уравнение (1) и найдем неизвестные коэффициенты:

   

С помощью функции Find найдем значения неизвестных коэффициентов

    Given

 

 Получим решение уравнения:

 

                                                                         Графики решения системы


3. Численное решение системы ДУ методом Рунге-Кутта

        

                                                                        Графики решения системы


4. Численное решение системы ДУ методом Эйлера

Графики решения системы

 


                            Расчет погрешностей для х

Заданный интевал t

Точное решение ДУ

1, Приближенное решение с помощью рядов

Абсолютная погрешность, D

Относительная погрешность, d - %

0

1,000

1

0,000

0,00%

0,1

1,328

1,328

0,000

0,00%

0,2

2,140

2,139

0,001

0,05%

0,3

3,508

3,504

0,004

0,11%

0,4

5,556

5,553

0,003

0,05%

0,5

8,472

8,388

0,084

0,99%

0,6

12,518

12,263

0,255

2,04%

0,7

18,062

17,405

0,657

3,64%

0,8

25,607

24,101

1,506

5,88%

0,9

35,836

32,689

3,147

8,78%

1

49,678

43,55

6,128

12,34%

Заданный интевал t

Точное решение ДУ

2, Численное решение ДУ методом Рунге-Кутта

Абсолютная погрешность, D

Относительная погрешность, d - %

0

1,000

1,000

0,000

0,00%

0,1

1,328

1,328

0,000

0,00%

0,2

2,140

2,139

0,001

0,05%

0,3

3,508

3,507

0,001

0,03%

0,4

5,556

5,556

0,000

0,00%

0,5

8,472

8,471

0,001

0,01%

0,6

12,518

12,517

0,001

0,01%

0,7

18,062

18,060

0,002

0,01%

0,8

25,607

25,603

0,004

0,02%

0,9

35,836

35,830

0,006

0,02%

1

49,678

49,669

0,009

0,02%

Заданный интевал t

Точное решение ДУ

2, Численное решение ДУ методом Эйлера

Абсолютная погрешность, D

Относительная погрешность, d - %

0

1,000

1,000

0,000

0,00%

0,1

1,328

1,1

0,228

17,17%

0,2

2,140

1,65

0,490

22,90%

0,3

3,508

2,659

0,849

24,20%

0,4

5,556

4,177

1,379

24,82%

0,5

8,472

6,293

2,179

25,72%

0,6

12,518

9,146

3,372

26,94%

0,7

18,062

12,925

5,137

28,44%

0,8

25,607

17,877

7,730

30,19%

0,9

35,836

24,373

11,463

31,99%

1

49,678

33,753

15,925

32,06%


                              Расчет погрешностей для у

Заданный интевал t

Точное решение ДУ

1, Приближенное решение с помощью рядов

Абсолютная погрешность, D

Относительная погрешность, d - %

0

0,000

0

0,000

#ДЕЛ/0!

0,1

1,071

1,071

0,000

0,00%

0,2

2,149

2,147

0,002

0,09%

0,3

3,331

3,313

0,018

0,54%

0,4

4,724

4,648

0,076

1,61%

0,5

6,455

6,221

0,234

3,63%

0,6

8,680

8,093

0,587

6,76%

0,7

11,602

10,316

1,286

11,08%

0,8

15,486

12,93

2,556

16,51%

0,9

20,683

15,97

4,713

22,79%

1

27,665

19,456

8,209

29,67%

Заданный интевал t

Точное решение ДУ

2, Численное решение ДУ методом Рунге-Кутта

Абсолютная погрешность, D

Относительная погрешность, d - %

0

0,000

0,000

0,000

#ДЕЛ/0!

0,1

1,071

1,071

0,000

0,00%

0,2

2,149

2,149

0,000

0,00%

0,3

3,331

3,331

0,000

0,00%

0,4

4,724

4,724

0,000

0,00%

0,5

6,455

6,454

0,001

0,02%

0,6

8,680

8,680

0,000

0,00%

0,7

11,602

11,601

0,001

0,01%

0,8

15,486

15,484

0,002

0,01%

0,9

20,683

20,680

0,003

0,01%

1

27,665

27,660

0,005

0,02%

Заданный интевал t

Точное решение ДУ

2, Численное решение ДУ методом Эйлера

Абсолютная погрешность, D

Относительная погрешность, d - %

0

0,000

0,000

0,000

#ДЕЛ/0!

0,1

1,071

1,1

-0,029

-2,71%

0,2

2,149

2,11

0,039

1,81%

0,3

3,331

3,129

0,202

6,06%

0,4

4,724

4,248

0,476

10,08%

0,5

6,455

5,558

0,897

13,90%

0,6

8,680

7,161

1,519

17,50%

0,7

11,602

9,174

2,428

20,93%

0,8

15,486

11,742

3,744

24,18%

0,9

20,683

15,045

5,638

27,26%

1

27,665

18,578

9,087

32,85%


                             
Совместные решения для X

                        

                        Совместные решения для Y


      
Вывод: Решение системы ДУ методом Рунге-Кутта практически не дало погрешностей, а графики приближенного решения с помощью рядов и численного решения методом Эйлера по мере возрастания на заданном интервале [0,1] дают небольшие отклонения, первый, начиная с точки t=0.2 (δ=0,05% и 0,09% для функций х и у соответственно) отклоняется вверх и при t=1 дает погрешность уже 12,34% и 29,67%. Решение методом Эйлера дает в сумме большую погрешность, так как уже начиная со второй точки t=0,1отклонение от точного графика значительное и при t=1 достигает значения δ ≈32% и лежит ниже точного графика.


 

А также другие работы, которые могут Вас заинтересовать

28350. Наименование места происхождения товара и его гражданско-правовая охрана 14.46 KB
  Наименование места происхождения товара и его гражданскоправовая охрана. Наименование места происхождения товара обозначение представляющее собой либо содержащее современное или историческое наименование страны населенного пункта местности другого географического объекта или производное от такого наименования и ставшее известным в результате его использования в отношении товара особые свойства которого исключительно или главным образом определяются характерными для данного географического объекта природными условиями и или людскими...
28351. Личные неимущественные права: понятие и виды 14.19 KB
  Личные неимущественные права: понятие и виды. Личные неимущественные права в гражданскоправовом смысле представляют собой урегулированные нормами права связи между определенными субъектами по поводу личных неимущественных благ это субъективные права граждан возникающие вследствие регулирования нормами гражданского права личных неимущественных отношений не связанных с имущественными. При характеристике личных неимущественных прав как субъективных гражданских прав необходимо отметить что эти права являются правами строго личного характера....
28352. Право на защиту чести, достоинства и деловой репутации 14.91 KB
  Гражданин вправе требовать по суду опровержения порочащих его честь достоинство и деловую репутацию сведений если распространивший такие сведения не докажет что они соответствуют действительности Порочащими являются такие не соответствующие действительности сведения содержащие утверждения о нарушении гражданином действующего законодательства или моральных принципов которые умаляют его честь и достоинство. Под распространением сведений порочащих честь и достоинство граждан следует понимать опубликование таких сведений в печати...
28353. Гражданско-правовая охрана индивидуальной свободы и личной жизни граждан 14.35 KB
  Гражданскоправовая охрана индивидуальной свободы и личной жизни граждан. Например права направленные на индивидуализацию личности управомоченного лица право на имя право на защиту чести и достоинства и права направленные на обеспечение личной неприкосновенности право на телесную неприкосновенность право на охрану жизни и здоровья право на неприкосновенность личного облика право на неприкосновенность личного изображения. К этим правам относятся: права на неприкосновенность жилища личной документации; право на тайну личной жизни...
28354. Понятие и значение наследования. Основные категории наследственного права 14.46 KB
  Основные категории наследственного права. Особенностью наследственного правопреемства является его универсальность: все права умершего переходят как единое целое причем одновременно и без посредничества третьих лиц. Значение наследования состоит в том что оно является основанием способом возникновения права собственности на чужое имущество. Понятие наследственное право употребляется в двух смыслах: объективном и субъективном: в субъективном смысле это право лица быть признанным к наследованию и его права на имущество после принятия...
28355. Субъекты наследственного правопреемства. Недостойные наследники 14.75 KB
  Граждане и государство могут быть наследниками как по закону так и по завещанию. При наследовании по закону граждане находящиеся в живых к моменту смерти наследодателя а также дети зачатые при его жизни и родившиеся после его смерти; При наследовании по завещанию любые лица находившиеся в живых к моменту смерти наследодателя а также зачатые при его жизни и родившиеся после его смерти. Вопервых не имеют права наследовать ни по закону ни по завещанию граждане которые противозаконными действиями направленными против наследодателя...
28356. Наследство: понятие и состав 14.51 KB
  Наследство: понятие и состав. В его состав согласно ст. Состав наследственного имущества чрезвычайно разнообразен. Включаются в состав наследства средства транспорта а также другое имущество предоставленное государством или муниципальным образованием на льготных условиях наследодателю в связи с его инвалидностью или другими подобными обстоятельствами ст.
28357. Наследование по завещанию: понятие и общие положения 13.85 KB
  Наследодатель вправе сделать распоряжение своим имуществом на случай смерти путем составления завещания. Условия совершения завещания: совершается полностью дееспособным гражданином должно быть совершено лично наследодателем в завещании должно содержаться распоряжение только одного лица Принципы: свобода завещания наследодатель по своему усмотрению выбирает наследников и завещает все или часть своего имущества также он вправе лишить наследства одного или нескольких наследников без объяснения причин в любое время может...
28358. Общие правила, касающиеся формы и порядка совершения завещания 14.64 KB
  Общие правила касающиеся формы и порядка совершения завещания. Форма завещания должна быть письменной. К содержанию завещания ГК РФ особых требований не предусматривается. Завещание обязательно должно быть подписано завещателем лично либо при помощи рукоприкладчика о чем делается запись при составлении завещания.