172

Решение дифференциальных уравнений численными методами в пакете MathCad

Реферат

Информатика, кибернетика и программирование

решение дифференциального уравнения вручную, операторным методом, приближенное решение с помощью рядов. Расчет погрешностей приближенных методов по сравнению с точным. Численное решение ДУ методом Рунге-Кутта.

Русский

2012-11-14

356 KB

106 чел.

Уральский Государственный Университет Путей Сообщения

                                                       Кафедра «Высшая математика»

                                                       Дисциплина «Вычислительная математика»

Курсовая работа

на тему:

«Решение дифференциальных уравнений численными методами в пакете MathCad»

                                                                      Выполнил: студент группы М-218

                                                                      Выборский М.А.

                                                                     

                                                                      Проверил: преподаватель

                                 Казанцева Н.В.

Екатеринбург

2009


Задача №1. Получить: точное решение дифференциального уравнения вручную, операторным методом, приближенное решение с помощью рядов (до 5 элемента ряда) на интервале [0,1], численное решение методами Эйлера и Рунге-Кутта, представить совместное графическое решение ДУ всеми способами, рассчитать относительную и абсолютную погрешность всех методов.

x"-x=cos3*t

x(0)=1    x'(0)=1

Дано:

1.Точное решение ДУ операционным методом

 

  Пусть Y(s) изображение функции х(t). Найдем вид операторного уравнения. Запишем выражение для второй  пройзводной (1) и для правой части (2) использованием оператора laplase

(1)

                                      (2)

Перепишем исходное уравнение через полученные изображения, подставив значения х(0) и х'(0) в исходное выражение


             Точное решение ДУ

2. Приближенное решение с помощью рядов

     Найдем функцию х в следующем виде:

 Найдем вторую производную исходного выражения:

                                                            Подставим значения второй производной и правой части в исходное    уравнение:

С помощью функции Find найдем значения неизвестных коэффициентов


            Получим решение уравнения:

      

      Фазовый портрет решения

3. Численное решение ДУ методом Рунге-Кутта

Производная х'

Производная х''

                 Графики решения

Фазовый портрет решения


4. Численное решение ДУ методом Эйлера

      Графики решения                                                      Фазовый портрет решения

        

                   

                                     Совместные решения

5. Расчет погрешностей приближенных методов по сравнению с точным

 

Заданный интевал t

Точное решение ДУ

1, Приближенное решение с помощью рядов

Абсолютная погрешность, D

Относительная погрешность, d - %

0

1,000

1

0,000

0,00%

0,1

1,110

1,110

0,000

0,00%

0,2

1,241

1,241

0,000

0,00%

0,3

1,392

1,392

0,000

0,00%

0,4

1,564

1,563

0,001

0,06%

0,5

1,754

1,753

0,001

0,06%

0,6

1,963

1,959

0,004

0,20%

0,7

2,190

2,179

0,011

0,50%

0,8

2,433

2,409

0,024

0,99%

0,9

2,693

2,645

0,048

1,78%

1

2,972

2,883

0,089

2,99%

Заданный интевал t

Точное решение ДУ

2, Численное решение ДУ методом Рунге-Кутта

Абсолютная погрешность, D

Относительная погрешность, d - %

0

1,000

1,000

0,000

0,00%

0,1

1,110

1,110

0,000

0,00%

0,2

1,241

1,241

0,000

0,00%

0,3

1,392

1,392

0,000

0,00%

0,4

1,564

1,564

0,000

0,00%

0,5

1,754

1,754

0,000

0,00%

0,6

1,963

1,963

0,000

0,00%

0,7

2,190

2,190

0,000

0,00%

0,8

2,433

2,433

0,000

0,00%

0,9

2,693

2,693

0,000

0,00%

1

2,972

2,972

0,000

0,00%

Заданный интевал t

Точное решение ДУ

2, Численное решение ДУ методом Эйлера

Абсолютная погрешность, D

Относительная погрешность, d - %

0

1,000

1,000

0,000

0,00%

0,1

1,110

1,1

0,010

0,90%

0,2

1,241

1,22

0,021

1,69%

0,3

1,392

1,361

0,031

2,23%

0,4

1,564

1,522

0,042

2,69%

0,5

1,754

1,702

0,052

2,96%

0,6

1,963

1,902

0,061

3,11%

0,7

2,190

2,119

0,071

3,24%

0,8

2,433

2,354

0,079

3,25%

0,9

2,693

2,604

0,089

3,30%

1

2,972

2,87

0,102

3,43%

  Вывод: численное решение ДУ методом Рунге-Кутта не дало погрешности, а графики приближенного решения с помощью рядов и численного решения методом Эйлера по мере возрастания на заданном интервале [0,1] дают небольшие отклонения, первый, начиная с точки t=0.6 (δ=0.20%) отклоняется вверх и при t=1 дает погрешность уже δ =2.99%. Решение методом Эйлера дает в сумме большую погрешность, так как уже начиная с точки t=0,2 отклонение от точного графика происходит более, чем на 1% и лежит ниже точного графика.


Задача №2.

Решить систему диф.уравнений, получить точное решение вручную, операторным методом, приближенное решение с помощью рядов(до 5 элемента), численное решение методом Эйлера,  Рунге-Кутта.  Представить графическое совместное решение, рассчитать относительную и абсолютную погрешность.

1. Решение системы ДУ операторным методом

1.1 Пусть Y(s) изображение функции y(t).Найдем вид операторного уравнения. Запишем выражение для производной х (1), для производной у (2) и для правой части  (3) использованием оператора laplase

  (1)

 (2)

    (3)

Перепишем исходное уравнение через полученные изображения, подставив значения х(0) и  y(0) в исходное выражение


Получим решение системы:


2. Приближенное решение системы ДУ с помощью рядов

   Выразим из первого уравнения системы у через х. Продифференцируем это выражение. Найденные значения у и его производной подставим во второе уравнение системы. Получим диф.уравнение второй степени, зависящее только от х.

y=x'/4-x/4                                     

y'=x''/4-x'/4                                         

x''/4-x'/4-2x+x'/4-x/4-9=0                                   

        x''/4-9/4x-9=0    (1)

 

 

Решим его с помощью рядов. Будем искать функцию х в следующем виде:

Найдем вторую производную этого выражения:

Подставим эти выражения в уравнение (1) и найдем неизвестные коэффициенты:

   

С помощью функции Find найдем значения неизвестных коэффициентов

    Given

 

 Получим решение уравнения:

 

                                                                         Графики решения системы


3. Численное решение системы ДУ методом Рунге-Кутта

        

                                                                        Графики решения системы


4. Численное решение системы ДУ методом Эйлера

Графики решения системы

 


                            Расчет погрешностей для х

Заданный интевал t

Точное решение ДУ

1, Приближенное решение с помощью рядов

Абсолютная погрешность, D

Относительная погрешность, d - %

0

1,000

1

0,000

0,00%

0,1

1,328

1,328

0,000

0,00%

0,2

2,140

2,139

0,001

0,05%

0,3

3,508

3,504

0,004

0,11%

0,4

5,556

5,553

0,003

0,05%

0,5

8,472

8,388

0,084

0,99%

0,6

12,518

12,263

0,255

2,04%

0,7

18,062

17,405

0,657

3,64%

0,8

25,607

24,101

1,506

5,88%

0,9

35,836

32,689

3,147

8,78%

1

49,678

43,55

6,128

12,34%

Заданный интевал t

Точное решение ДУ

2, Численное решение ДУ методом Рунге-Кутта

Абсолютная погрешность, D

Относительная погрешность, d - %

0

1,000

1,000

0,000

0,00%

0,1

1,328

1,328

0,000

0,00%

0,2

2,140

2,139

0,001

0,05%

0,3

3,508

3,507

0,001

0,03%

0,4

5,556

5,556

0,000

0,00%

0,5

8,472

8,471

0,001

0,01%

0,6

12,518

12,517

0,001

0,01%

0,7

18,062

18,060

0,002

0,01%

0,8

25,607

25,603

0,004

0,02%

0,9

35,836

35,830

0,006

0,02%

1

49,678

49,669

0,009

0,02%

Заданный интевал t

Точное решение ДУ

2, Численное решение ДУ методом Эйлера

Абсолютная погрешность, D

Относительная погрешность, d - %

0

1,000

1,000

0,000

0,00%

0,1

1,328

1,1

0,228

17,17%

0,2

2,140

1,65

0,490

22,90%

0,3

3,508

2,659

0,849

24,20%

0,4

5,556

4,177

1,379

24,82%

0,5

8,472

6,293

2,179

25,72%

0,6

12,518

9,146

3,372

26,94%

0,7

18,062

12,925

5,137

28,44%

0,8

25,607

17,877

7,730

30,19%

0,9

35,836

24,373

11,463

31,99%

1

49,678

33,753

15,925

32,06%


                              Расчет погрешностей для у

Заданный интевал t

Точное решение ДУ

1, Приближенное решение с помощью рядов

Абсолютная погрешность, D

Относительная погрешность, d - %

0

0,000

0

0,000

#ДЕЛ/0!

0,1

1,071

1,071

0,000

0,00%

0,2

2,149

2,147

0,002

0,09%

0,3

3,331

3,313

0,018

0,54%

0,4

4,724

4,648

0,076

1,61%

0,5

6,455

6,221

0,234

3,63%

0,6

8,680

8,093

0,587

6,76%

0,7

11,602

10,316

1,286

11,08%

0,8

15,486

12,93

2,556

16,51%

0,9

20,683

15,97

4,713

22,79%

1

27,665

19,456

8,209

29,67%

Заданный интевал t

Точное решение ДУ

2, Численное решение ДУ методом Рунге-Кутта

Абсолютная погрешность, D

Относительная погрешность, d - %

0

0,000

0,000

0,000

#ДЕЛ/0!

0,1

1,071

1,071

0,000

0,00%

0,2

2,149

2,149

0,000

0,00%

0,3

3,331

3,331

0,000

0,00%

0,4

4,724

4,724

0,000

0,00%

0,5

6,455

6,454

0,001

0,02%

0,6

8,680

8,680

0,000

0,00%

0,7

11,602

11,601

0,001

0,01%

0,8

15,486

15,484

0,002

0,01%

0,9

20,683

20,680

0,003

0,01%

1

27,665

27,660

0,005

0,02%

Заданный интевал t

Точное решение ДУ

2, Численное решение ДУ методом Эйлера

Абсолютная погрешность, D

Относительная погрешность, d - %

0

0,000

0,000

0,000

#ДЕЛ/0!

0,1

1,071

1,1

-0,029

-2,71%

0,2

2,149

2,11

0,039

1,81%

0,3

3,331

3,129

0,202

6,06%

0,4

4,724

4,248

0,476

10,08%

0,5

6,455

5,558

0,897

13,90%

0,6

8,680

7,161

1,519

17,50%

0,7

11,602

9,174

2,428

20,93%

0,8

15,486

11,742

3,744

24,18%

0,9

20,683

15,045

5,638

27,26%

1

27,665

18,578

9,087

32,85%


                             
Совместные решения для X

                        

                        Совместные решения для Y


      
Вывод: Решение системы ДУ методом Рунге-Кутта практически не дало погрешностей, а графики приближенного решения с помощью рядов и численного решения методом Эйлера по мере возрастания на заданном интервале [0,1] дают небольшие отклонения, первый, начиная с точки t=0.2 (δ=0,05% и 0,09% для функций х и у соответственно) отклоняется вверх и при t=1 дает погрешность уже 12,34% и 29,67%. Решение методом Эйлера дает в сумме большую погрешность, так как уже начиная со второй точки t=0,1отклонение от точного графика значительное и при t=1 достигает значения δ ≈32% и лежит ниже точного графика.


 

А также другие работы, которые могут Вас заинтересовать

42198. Повiрка цифрових та аналогових омметрiв 144.5 KB
  Програма роботи У процесі підготовки до заняття студенту потрібно ознайомитись з методикою повірки омметрів згідно ГОСТ 9. Здійснити повірку цифрових універсальних омметрів типу В7 20 та В7 16А.1 Будова аналогових омметрів Омметрами називають прилади прямої дії які служать для безпосереднього вимірювання активних опорів. Перевага двохрамочних омметрів у тому що їх покази не залежать від напруги джерела живлення.
42199. Калібрування і повірка термометрів опору 286.5 KB
  Засвоїти методику отримання практичних навиків при проведенні досліджень динамічних характеристик термометрів опору при нагріванні і охолодженні повірці термометрів опору та калібруванні напівпровідникових термометрів опору термісторів.2 Програма роботи Під час заняття студент повинен ознайомитись з будовою та принципом дії термометрів опору. Визначити динамічну похибку термометрів опору типу ТСП і ТСМ.
42200. Систематичні похибки вимірювань та методи їх зменшення 71.5 KB
  У процесі заняття провести вимірювання різних електричних величин різними способами і засобами визначити систематичні похибки ввести поправки до результатів вимірювань обчислити дійсні значення вимірюваних величин і впевнитись у правильності отриманих значень.1 Систематичні похибки вимірювань та методи їх зменшення Процес пізнання матеріального світу відбувається через експериментальне визначення вимірювання кількісних оцінок фізичних величин що характеризують досліджувані процеси явища. Таким чином результат...
42201. Вивчення будови, принципу дії та застосування електронного осцилографа для електричних вимірювань 461 KB
  Практичне виконання вимiрювань напруги струму часових iнтервалiв частоти кута зсуву фаз складової комплексного опору та iнших електричних величин з допомогою осцилографа. При пiдготовцi до роботи студенти повиннi самостiйно продумати i завчасно пiдготувати програму виконання роботи для заданого їм варiанта вибрати або скласти самостiйно необхiднi для цього схеми вимiрювань запропонувати свої рiшення в здiйсненнi вимiрювань дiючих значень синусоїдальних струмiв i напруг з допомогою осцилографа. Пропонується продумати методику...
42202. Вивчення методів та засобів вимірювання електричної ємності та індуктивності 245 KB
  Ознайомлення з різними методами вимірювання електричної ємності і індуктивності та приладами що використовуються для цього. Ознайомлення з будовою мостів змінного струму і універсальних мостів з будовою і застосуванням резонансних вимірювачів індуктивності L і ємності С. Отримання навичок практичного виконання вимірювань ємності і індуктивності.
42203. Електронні автоматичні мости і їх повірка 109 KB
  За результатами повірки зробити висновки про придатність до експлуатації автоматичного моста.3 Основні теоретичні відомості Електронні автоматичні мости Як правило термометри опору працюють в комплекті зі зрівноваженими електронними автоматичними мостами постійного або змінного струму або з логометрами. В автоматичних мостах використовується вимірювальна система чотириплечового моста з реохордом що забезпечує високу точність вимірювання. Термометр опору який є чутливим елементом моста включається в одне з його плечей.
42204. МОДЕЛИРОВАНИЕ ЛИНЕЙНЫХ ДИНАМИЧЕСКИХ СИСТЕМ 751 KB
  Ознакомление с пакетом прикладных программ SIMULINK и основными приемами моделирования линейных динамических систем. К занятию допускаются студенты составившие схемы моделирования заданных динамических систем см.1 могут быть составлены схемы моделирования уравнений 1. Для составления схемы моделирования дифференциальных уравнений 1.
42205. КАНОНИЧЕСКИЕ ФОРМЫ ПРЕДСТАВЛЕНИЯ ДИНАМИЧЕСКИХ СИСТЕМ 181.26 KB
  Математическая модель одной и той же линейной динамической системы может быть представлена в различных формах: в форме скалярного дифференциального уравнения -го порядка (модель вход-выход) или в форме системы из дифференциальных уравнений 1-го порядка (модель вход-состояние-выход). Следовательно, между различными формами представления математических моделей существует определенная взаимосвязь, т.е. модель вход-состояние-выход может быть преобразована к модели вход-выход и наоборот.
42206. ПОСТРОЕНИЕ И ИССЛЕДОВАНИЕ МОДЕЛЕЙ ВНЕШНИХ ВОЗДЕЙСТВИЙ 215.45 KB
  Теоретические сведения. В ряде задач анализа и синтеза систем управления требуется построить дифференциальное уравнение по известному частному решению, заданному в виде функции времени. Такая задача возникает, например, при построении динамических моделей внешних воздействий (так называемых, командных генераторов) — сигналов задания и возмущений. Особо отметим, что, в известном смысле, данная задача является обратной по отношению к задаче нахождения решения дифференциального уравнения (см. лабораторную работу № 1)