17205

Посткласифікаційна обробка зображень. Робота із векторними шарами

Лабораторная работа

География, геология и геодезия

Лабораторна робота №5. Посткласифікаційна обробка зображень. Робота із векторними шарами В даній лабораторній роботі ми розглянемо роботу із класифікованими зображеннями їх перевірку покращення та експорт у векторний формат. Тестування правильності класифікаці...

Украинкский

2013-06-30

2.66 MB

3 чел.

Лабораторна робота №5. Посткласифікаційна обробка зображень. Робота із векторними шарами

В даній лабораторній роботі ми розглянемо роботу із класифікованими зображеннями, їх перевірку, покращення та експорт у векторний формат.

Тестування правильності класифікації за допомогою контрольних зразків

Відкриємо вихідний супутниковий знімок for_classification.tif та результат його класифікації classified1_min_dist.img, виконаний на минулій лабораторній роботі  (рис. 5.1)

Рис. 5.1. Вихідні файли для роботи

Нагадаємо, що класифікація була проведена за наступними класами (збережені у 5-class-train.roi) (рис. 5.2.):

  •  Вода (Water) – червоний колір;
  •  Трава (Grass) – зелений колір;
  •  Ліс (Forest) – синій колір;
  •  Міська забудова (Urban) – жовтий колір;
  •  Грунт (Dirt) – блакитний колір

Рис. 5.2. Області-зразки класів

 Проведемо автоматичну перевірку правильності класифікації за допомогою тестових зразків. 

 Для цього створимо області-зразки за допомогою ROI Tool (Basic Tools/Region of Interest/ROI Tool). Обираємо тип області – Polygon або Rectangle, вікно, в якому будемо малювати область (Image, Scroll або Zoom). За допомогою лівої кнопки миші обводимо потрібну область, за допомогою кліку правою кнопкою в середині області – заповнюємо її. Після того, як потрібні обєкти 1-го типу обрано, створюємо нову область за допомогою New Region та задаємо обєкти другого типу.

 Важливо! Області для перевірки повинні мати ті ж самі імена, що і області, за якими було здійснено класифікацію.

Зберігаємо отримані обєкти File/Save ROIs...у файлі 5-class-train.roi (рис. 5.3)

Рис. 5.3. Тестові зразки

Будуємо матрицю невідповідностей Classification/Post Classification/Confusion Matrix/Using Ground Truth ROIs (рис. 5.4)

Рис. 5.4. Побудова матриці невідповідностей

Обираємо файл-результат класифікації (у нашому випадку classified1_min_dist.img). Зявиться вікно Match Classes Parameters (рис. 5.5). Якщо ви правильно задали імена класів при створенні  тестових ROI, то відповідність класів буде визначена автоматично. Якщо ж ні, то потрібно вручну задати однакові класи. Натискаємо ОК в цьому та наступному вікнах.

Рис. 5.5 Відповідність класів

З`явиться вікно матриці невідповідностей (рис. 5.6.) Тут можна подивитись, наскільки точно зійшлися тестові зразки із результатами класифікації взагалі(Overall Accuracy), побачити статистику по окремих класах у абсолютних величинах (пікселі) та відносних (відсотки).

Рис. 5.6. Матриця невідповідностей

 Також можно побудувати робочу характеристичну криву (ROC curve – receiver operating characteristic), що показує взаємозалежність вірно та невірно класифікованих об`єктів.

 Для цього виберемо Classification /Post Classification / ROC Curves /Using Ground Truth ROIs.

У вікні, що з`явилося, обираємо файл із базою правил classified1_rules_min_dist.img, який ми зберігали на минулій лабораторній роботі разом із результатом класифікації. Далі обираємо відповідність класів. У наступному вікні (рис. 5.7) вводимо:

  •  Classify – Minimum Value для класифікаторів типу Minimum  distance or SAM classifier, Maximum Value для іншіх класифікаторів(наприклад для класифікатора за найбільшою подібністю Maximum Likelihood);
  •  Min = 0,  Max  = 100;  
  •  Points per ROC Curve – 70. Це поле визначає кількість точок, за якими будується крива. Чим більше – тим крива гладше та тим довше вона будується.

Рис. 5.7. Параметри робочої характиристичної кривої

Натискаємо ОК та отримуємо графіки, показані на рис. 5.8.

Рис. 5.8. Робоча характеристична крива класифікатора

Ідеальна крива представляє собою східчасту функцію (step). Чим ближча крива до «сходинки», тим краща класифікація. Кольори, що використані на графіку за замовченням не співпадають із кольорами класів.

Тепер спробуємо покращити результати класифікації за допомогою інструментів пост-обробки.

Корегування зразків для класифікації

 В головному меню обираємо Classification/Post Classification/Rule Classifier. В діалоговому вікні вибору файлів обираємо файл із базою правил classified1_rules_min_dist.img, який ми зберігали на минулій лабораторній роботі разом із результатом класифікації.

 У вікні, що з`явиться підбираємо значення порогу (Thresh) таким чином, щоб результат класифікації максимально відповідал дійсності (рис. 5.9)

Рис. 5.9. Налаштування правил класифікації

Результат зберігаємо в окремий файл classified2_min_dist.img

Корекція класифікованого зображення

Majority/Minority Analysis

Якщо в середині області якого-небудь із класів є паразитні пікселі іншого класу, їх можна відфільтрувати за допомогою інструмента majority analysis. Обираємо у головному меню Classification/Post Classification/Majority/Minority Analysis (рис. 5.10)

Рис. 5.10 Majority/Minority Analysis

 Принцип роботи

При виборі majority analysis, клас центрального пікселя ядра(kernel) заміщується значенням класу більшості пікселів ядра. При виборі minority analysis, клас центрального пікселя ядра(kernel) заміщується значенням класу меншості пікселів ядра.

Розмір ядра має бути непарним. Ядро не є обовьязково квадратом. Параметр center pixel weight визначає за скільки пікселів буде пораховано центральний піксель. Наприклад, при значенні 5, клас середнього пікселя буде вразований 5 разів. На рис. 5.11 показано приклад застосування Majority/Minority Analysis із розміром ядра 7х7.

Рис. 5.11. Результат застосування Majority/Minority Analysis. Ліворуч вихідний файл, по центру – Minority Analysis, праворуч – Majority Analysis.

 

Редагування кольорів класів

Для задання довільного кольору для класу, натискаємо Tools/Color Mapping/Class Color Mapping у вікні Main Image Display. Обравши потрібний клас, задаємо за допомогою повзунків R, G, B колір. Для збреження результату, обираємо File/Save Changes.


Створення векторної карти за даними класифікації

Для створення векторної карти обираємо в головному меню Classification/Post Classification/ Classification to Vector та обираємо файл класифікації classified1_min_dist.img.

У діалоговому вікні (рис. 5.12) обираємо всі класи, задаємо режим одін шар на клас (One Layer per Class) та зберігаємо результат у файл vector_classified.evf.

Рис. 5.12. Параметри створення векторних шарів

Тепер відкриється вікно векторних шарів (рис. 5.13).

Рис. 5.13. Відкриття векторних шарів

Завантажуємо векторні шари в Display #1 (рис. 5.14)

Рис. 5.14. Поєднаня векторних та растрового шарів

Input files:

for_classification.tif 

for_classification.hdr

classified1_min_dist.img

classified1_min_dist.hdr

5-class-train.roi 

classified1_rules_min_dist.img

classified1_rules_min_dist.hdr

Output files:

vector_classified_[1..5].evf

vector_classified_[1..5].dbf

5-class-test.roi

classified2_min_dist.img

classified2_min_dist.hdr

classified1_min_dist_maj.img

classified1_min_dist_min.img

PAGE  9


 

А также другие работы, которые могут Вас заинтересовать

31686. Процес створення образів уяви 26 KB
  поєднання якостей властивостей Найелементарнішою формою синтезування нових образів є аглютинація від лат. Прийомом створення нових образів є аналогія. Найскладнішим способом утворення образів уяви є створення типових образів.
31687. Поняття про пам’ять 22.5 KB
  Закріплення зберігання та наступне відтворення людиною її попереднього досвіду називається пам’яттю. Пам’ять є підґрунтям психічного життя людини. Завдяки пам’яті людина може здобувати необхідні для діяльності знання вміння та навички.
31688. Функції і причини уваги 36 KB
  Загальна характеристика уваги. Функції і причини уваги. Види уваги. Успішне ж виконання цього завдання потребує правильного розуміння природи уваги її видів характерних особливостей і шляхів розвитку у дітей.
31690. Форми переживання емоцій і почуттів 29.5 KB
  Настрій це загальний емоційний стан який своєрідно забарвлює на певний час діяльність людини характеризує її життєвий тонус. Афект як і настрій залежить певною мірою від індивідуальних особливостей людини: її темпераменту характеру вихованості. Афекти викликають глибокі зміни у психічному житті людини виснажують її.
31691. Мотиваційна сфера особистості. Потяги і бажання. Прагнення особистості. Ризик як вияв активності особистості 81.5 KB
  Здійснюючи цілеспрямовані дії людина зустрічається з різноманітними перешкодами. Тут і оцінка ситуації і вибір шляху для майбутньої дії відбір засобів потрібних для досягнення мети прийняття рішень і т.Якщо в людини відсутня актуальна потреба виконувати дію але при цьому необхідність виконання її вона усвідомлює то воля створює допоміжне спонукання змінюючи смисл дії робить його більш значущим. Довільні та вольові дії включаються в зміст вольової поведінки людини.
31692. Самоосвіта та самовиховання як умова успішної діяльності вчителя 31 KB
  Кількість часу й сил які вчитель витрачає на самоосвіту залежить від його мотивації. Ніхто не сперечатиметься з тезою що якщо вчитель хороший то й рівень знань учнів високий. Працювати над собою вчитель починає ще зі студентської лави. Якщо вчитель не вдосконалює себе не експериментує то перетворюється на ремісника який стоїть за верстатом і робить кожного дня одну й ту ж роботу.
31693. Розвиток і виховання дитини в сім'ї потребує безлічі діяльнісних ситуацій, в яких відбувається формування особистості заданої орієнтації 47 KB
  Головне навантаження щодо забезпечення реального звязку з сімєю лягає на плечі класного керівника. Свою діяльність він організовує через класний батьківський комітет, батьківські збори, а також через вчителів, які працюють в даному класі. Важливою частиною практичної діяльності класного керівника з підтримання контактів