17394

Плоскость, линии и точки в плоскости

Лекция

Математика и математический анализ

Плоскость линии и точки в плоскости. Проецирование элементов определяющих плоскость. При ортогональном проецировании любая плоскость может быть задана на чертеже проекциями трех точек не лежащих на одной прямой ; проекциями прямой и точки не лежащей на данно...

Русский

2013-07-01

73.5 KB

1 чел.

Плоскость, линии и точки в плоскости.

Проецирование элементов, определяющих плоскость.

    При ортогональном проецировании любая плоскость может быть задана на чертеже проекциями трех точек, не лежащих на одной прямой ;  проекциями  прямой и точки, не лежащей на данной прямой;  проекциями двух параллельных прямых; двух пересекающихся прямых; проекциями любой плоской фигуры. Плоскость может быть задана следами - линиями пересечения плоскости с плоскостями проекций.

                       В2   

            А2                                                                             В2

                                               С 2                                    А2                                        С2

                                                                         

X

                                                                                                                                                  

                                                                                          А1                                           С1

                                                 С 1                                                                    В1               

                 А 1                                                                                                              K2                      a 2

                                В1                                                                                    

                                          В2                          D2                                                                                  b 2

       А2                                  С2                      

X

                                                                                                                                                                    b 1

       A 1  

                                                  C1

                                           B1                        D1                                                        K 1

                                                                          В 2                                                                                       a 1

                        А2 

                                                                  С 2                                                                   P 2

                                                                                                                                                                   

                                                                                                    X                                                                     P x

                                                                           В1

                       А1                                                      

                                                                                                                                   P 1

                                                               С1

 Плоскости бывают общего положения и частного.  Выше на рисунках приведены примеры плоскостей общего положения.

Плоскость общего положения не параллельна и не перпендикулярна ни одной из плоскостей проекций.

Плоскость частного положения параллельна или перпендикулярна хотябы к одной из плоскостей проекций .  Плоскости частного положения делятся на две группы :

    плоскости уровня - перпендикулярные двум плоскостям проекций и параллельные одной из них ;   

     проецирующие -  перпендикулярные к одной плоскости проекций и наклонные к двум другим.

Плоскости уровня могут находиться в трех положениях :

1) параллельна горизонтальной плоскости проекций и перпендикулярна фронтальной и профильной;

                                       А2                 В2                 С2

 

                 

                          Х

                                                                                                                 С1

                                                   А1   

                                                                                    В1

2)  параллельна  фронтальной плоскости и перпендикулярна  горизонтальной и профильной;                                              В2

                                       А2                                        С2               

                                   Х

                                                      А1                             В1                   С1

3)  параллельна профильной плоскости проекций и перпендикулярна горизонтальной и фронтальной плоскостям проекций:

       А2                                                           А3

      В2                                                                                 В3          

                      

    С2                        

                                     С3     

                                   0

                                   

 

         С1

      А1

        В1

Прецирующие плоскости  также могут находиться в трех  положениях :

1) перпендикулярна горизонтальной плоскости проекций и наклона к фронтальной и профильной плоскостям:

                                                                                            В2               В3         

    1)   В2                                2)                   В2             3)                                                                            

                                                    С2                     А2                                          А3

А2                                 А2                                                                                                                                       

                               С2                                                  С 2                                Сз        

                                                                                                                                 В1

   А1                                                                                    В1

                                                    А1                                             А1    

                 В1

                                                                                                                             С1

                                     С1                            С1      

2) перпендикулярна фронтальной плоскости проекций и наклона к горизонтальной и   профильной плоскостям.

3) перпендикулярна профильной плоскости проекций и наклона к горизонтальной и фронтальной  плоскостям.

         Углы между проецирующей плоскостью и не перпендикулярными ей плоскостями проекций проецируются в натуральную величину  на ту  плоскость проекций , которой перпендикулярна данная плоскость.

Плоскости уровня и проектирующиеся плоскости характерны тем, что проекции всех точек и линий лежащих в этих плоскостях , будут лежать на проекции этой плоскости, которая изображается прямой линией.  

Рассмотрим    ОСОБЫЕ   ЛИНИИ   ПЛОСКОСТИ.

   Среди линий принадлежащих плоскости можно выделить линии параллельные плоскостям проекций :  горизонтали плоскости, фронтали плоскости, профильные прямые плоскости.  К особым относится и линия наклона, которая определяет угол наклона плоскости к той или иной плоскости проекций.

Линию наклона к плоскости П1 принято называть линией ската. Линия наклона к плоскости П2 перпендикулярна к фронталям плоскости, линия ската перпендикулярна к горизонталям плоскости, а линия наклона к плоскости П3 перпендикулярна к профильным прямым плоскости.

       Условием принадлежности прямой плоскости будет:

если две точки прямой принадлежат плоскости, то и все точки данной прямой будут лежать в этой плоскости.

       Т.е., чтобы начертить прямую лежащую в плоскости, достаточно  найти две общие точки.

Проведем горизонталь в плоскости заданной отсеком:

 Пространственный алгоритм:   h   ABC )

Мы знаем, что фронтальная проекция горизонтали параллельна оси  Х,  вместе с тем горизонталь принадлежит плоскости заданной треугольником  АВС.

Проведем через точку  А 2  линию параллельную оси Х  и  отметим  пересечение этой линии со стороной В2С2 точкой 1 2 .

( ГА: h 2   А2В2С2 ;    h 2    )  (Построить фронтальную проекцию горизонтали пересекающую треугольник  А2В2С2; фронтальная проекция горизонтали параллельна оси  Х).

Проведем линию проекционной связи для нахождения проекции 1 1.

   С   (1 1) (Построить точку 11 принадлежащую отрезку В1С1 и линии проекционной связи 1 2 1 1.

                                                        В 2

                                                             

                                          1 2

              А2                                        h 2

                                    С 2

Х

              А  1                                       В1

                                                        h 1

                                             1 1

                                      С 1

(А1 11)  А1  11

(Построить линию А1 11 включающую  точки А1 и 11).

Эта линия будет горизонтальной проекцией горизонтали.

     Если бы плоскость была бы задана при помощи трех

       точек не лежащих на одной прямой и надо было бы провести горизонталь плоскости, задача мало бы отличалась от уже рассмотренной. Аналогично, если плоскость задана  двумя пересекающимися прямыми. Любые две стороны нашего треугольника  АВС можно рассматривать как пересекающиеся прямые.

Рассмотрим случай  построения фронтали плоскости, если плоскость

задана двумя параллельными прямыми.

Воспользуемся тем, что нам известно направление горизонтальной

проекции фронтали. Возьмем произвольную точку 11 на прямой a1 и

проведем линию параллельно оси Х до пересечения  в точке 21 с прямой  b 1.   

Воспользовавшись линиями проекционной связи найдем точки  12 и 22

 через которые проходит фронтальная проекция фронтали и проведем ее.

                                                                                                        22                                                                         

              a 2                                 f 2      

           12

                                          b2    

      Х

                                          b 1

            11                                    f 1                                                  21

             a 1       

                       

Точка в плоскости.

Точка принадлежит плоскости, если лежит на прямой принадлежащей плоскости.

Пусть плоскость задана пересекающимися прямыми  а и b.

Имеется горизонтальная проекция точки  А1 необходимо построить А2.

             a 2

                                12

                                                      22

                                                                                          A2

            b 2

           b 1

                                                                                          

                                                                                         *А1

               a1           1 1                     21      

Через горизонтальную проекцию точки а1 проведем произвольную прямую пересекающую горизонтальные проекции  линий задающих плоскость

в точках  1 1 и 2 1. Построим фронтальную проекцию этой линии и на ней найдем точку   а 2.

Подумайте самостоятельно, как бы мы решали аналогичную задачу,  если бы были заданы обе проекции точки А и требовалось определить принадлежит ли точка А плоскости заданной пересекающимися прямыми.

Дома самостоятельно, на листе в клетку в тетради для конспектов построить эллипс. Большую и малые оси задать произвольно. Прошу не строить овал вместо эллипса.


 

А также другие работы, которые могут Вас заинтересовать

21719. Показатели надежности ЭМС 141 KB
  Вероятность безотказной работы ВБР– это вероятность того что при определенных условиях эксплуатации в заданном интервале времени не произойдет ни одного отказа. Кривые вероятности безотказной работы и вероятности отказов Вероятность отказа Qt– это вероятность того что при определенных условиях эксплуатации в заданном интервале времени произойдет хотя бы один отказ. Отказ и безотказная работа – события противоположенные и несовместимые 2 Частота отказов at– есть отношение отказавших изделий в единицу времени к первоначальному числу...
21720. Расчёт надежности при последовательном (основном) соединении элементов 225.5 KB
  С точки зрения надежности различают последовательные параллельные и системы со сложной структурой. Расчёт надежности при последовательном основном соединении элементов при таком соединении отказ технического изделия наступает при отказе одного из его узлов. Для повышения надежности систем и элементов применяют резервирование: Резервирование – это применение дополнительных средств иили возможностей с целью сохранения работоспособного состояния объекта при отказе одного или нескольких его элементов. Резервирование основано на...
21721. Модели отказов электроустановок 177.5 KB
  Вероятность безотказной работы такой системы определяется как вероятность безотказной работы всех элементов в течение времени t: где n – число элементов последовательно соединенной системы; –событие безотказной работы; – вероятность безотказной работы iго элемента. В случае невосстанавливаемых элементов вероятность отказа системы определяется как вероятность совпадения отказов или m элементов в течение расчётного времени. Если отказы одного элемента не зависят от отказов других элементов то формулы для оценки вероятности безотказной...
21722. МОДЕЛИ ОЦЕНКИ НАДЕЖНОСТИ ЭМС 117.5 KB
  Распределение экстремальных значений Пусть имеется случайная выборка объемом n взятая из бесконечной совокупности имеющей распределение Fx где х– непрерывная случайная величина.1 Так как разрушение материала связано с существованием наиболее слабой точки в работах по теории надежности рассматривается распределение экстремальных значений. Здесь будет рассмотрено распределение наименьших значений однако этот подход может быть использован и при выводе распределений наибольших значений. Функция распределения наименьших значений функция...
21723. Модели надёжности установок с восстановлением 310 KB
  Модели надёжности установок с восстановлением При экспоненциальном законе распределения времени восстановления и времени между отказами для расчёта показателей надёжности установки с восстановлением пригоден математический аппарат марковских случайных процессов. Дискретный случайный процесс называется марковском если все вероятностные характеристики будущего протекания этого процесса при зависят лишь от того в каком состоянии этот процесс находился в настоящий момент времени и не зависят от того каким образом этот процесс протекал до...
21724. Общие принципы определения ущерба от нарушений электроснабжения 80 KB
  Общие принципы определения ущерба от нарушений электроснабжения Проблема оценки ущерба от нарушений электроснабжения вызываемых отказами электрооборудования возникает как при проектировании так и при эксплуатации энергетических объектов. При проектировании потребность в характеристике ущерба ощущается как правило когда определяется экономическая эффективность капитальных вложений при выборе вариантов технических и организационнохозяйственных решений влияющих на степень надежности электроснабжения потребителей. При эксплуатации...
21725. Технико-экономическая оценка последствий от нарушений электроснабжения объектов производственных систем 240 KB
  Техникоэкономическая оценка последствий от нарушений электроснабжения объектов производственных систем 8.1 Модель поведения участка производства при нарушениях его электроснабжения По характеру последствий все отказы участков производственной системы можно разделить на три группы: 1 не обесценивающие производственную продукцию; 2 частично обесценивающие; 3 полностью обесценивающие. В этом случае длительность простоя производственного участка соответствует длительности нарушения электроснабжения . Большинство нарушений электроснабжения...
21726. Накопители на жестких магнитных дисках 116 KB
  1 БУСД – блок управления 3х фазным синхронным двигателем шпинделя; И –инвертор; СД – синхронный двигатель; БП блок питания; ВК – внутренний контроллер БУП – блок управления позиционированием головки; ОЗУ – оперативное запоминающее устройство ВК; см – сервометка; ДПГ – датчик позиционирования головки. Кроме того он дает разрешение на выпуск головки при достижении минимальной скорости вращения. Для записи и считывания используются магнитные головки представляющие собой катушки индуктивности которые выполняются по тонкопленочной технологии....
21727. Устройства массовой памяти на сменных носителях 180 KB
  Устройства массовой памяти на сменных носителях Вопросы: Магнитооптические диски. Оптические диски CD DVD PD. Эти устройства подключаются к компьютеру с помощью следующих интерфейсов: АТА SCSI USB Наибольшей популярностью пользуются в настоящее время CD DVD и магнитооптические диски. Магнитооптические диски.